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Abstract — The Time Series Classification Residual Network 

(TSCResNet) deep learning model is introduced in this study to 

improve the classification performance in the human activity 

recognition (HAR) problem. Specifically in the context of closed-

set classification where all labels or classes are present during 

the model training phase. This contrasts with open-set 

classification where new, unseen activities are introduced to the 

HAR system after the training phase. The proposed TSCResNet 

model is evaluated with the benchmark PAMAP2 Physical 

Activity Monitoring Dataset. By using the same quantitative 

methods and data preprocessing protocols as previous research 

in the field of closed-set HAR, results show that the TSCResNet 

model architecture is able to achieve improved classification 

results across accuracy, the weighted F1-score, and mean F1-

score. 

 
Keywords — Closed-set classification, deep learning, human 

activity recognition, residual neural networks.  

 

I. INTRODUCTION 

Time series classification (TSC) involves the acquisition of 

time dependent data points and determining, via the use of 

machine learning algorithms, if the dataset belongs to a 

particular class of known patterns or types of observations [1]. 

For example, in an assembly line scenario, repetitive motions 

are common and can be easily predicted. Even in the case 

where there are several types of motions, time series 

classification models can accurately predict the type of motion 

observed. In closed-set classification, the training data 

contains all possible class labels that the machine learning 

algorithms can use to learn relationships between the training 

data and the class label of the data. Therefore, when the trained 

model is deployed to make predictions, the model will only 

predict classes present during the model training phase. The 

closed-set classification system is also expected to receive 

relevant data inputs for prediction or no new or unseen classes. 

This contrasts with the open-set classification case, new, 

previously unseen activities appear to a human activity 

recognition (HAR) system and so different frameworks are 

needed to assess classification performance [2]. 

This study focuses on the closed-set classification problem 

in the field of HAR. A new residual deep neural network 

architecture, TSCResNet, is proposed in this study with the 

aim to improve closed-set classification performance. The 
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proposed method will be evaluated with an open-source 

dataset, the PAMAP2 Physical Activity Monitoring Dataset 

that is made available by the University of California 

Riverside (UCR) time series classification and clustering 

repository [3], [4]. By evaluating the performance of the 

proposed TSCResNet model with a commonly used 

standardized dataset in HAR research, it is possible to assess 

the effectiveness of this approach versus other methods. 

 

II. RELATED WORKS 

A. Deep Learning Architectures 

In a recent publication by Lv et al. [2] deep learning based 

models are proposed to address the closed-set classification 

problem. An overview of the architectures, as illustrated by Lv 

et al. are shown in Fig. 1 [2].The models consists of five main 

components, a set of convolutional neural network (CNN) 

layers, a long short-term memory (LSTM) neural network, a 

pooling layer, a dense layer, and a custom modification to a 

softmax layer, or normalized exponential function, that adds a 

customized margin-based method to improve the 

classification performance and is therefore referred to as the 

arcmargin layer. These components are layered or connected 

sequentially to create the overall architecture of their model. 

This study focuses on two of the proposed architectures by Lv 

et al. [2]. One architecture combines all the components to 

create the Hybrid-M architecture, as shown on the bottom left 

of Fig. 1, and another only excludes the LSTM layers to create 

the CNN-M architecture, as shown in the top left of Fig. 1. 

The -M denotes their incorporation of the arcmargin layer. Lv 

et al. uses the open-source PAMAP2 Physical Activity 

Monitoring Dataset to present their findings and benchmark 

their deep learning architectures [2].  

Similarly, Guan & Plötz and Moya Rueda et al. propose 

deep learning architectures to improve the closed-set 

classification performance using the PAMAP2 Physical 

Activity Monitoring Dataset [5], [6]. Guan & Plötz propose 

and ensemble method that consists of long short-term memory 

(LSTM) neural networks. LSTMs are a type of recurrent 

neural networks (RNN) that can account for sequential 

relationships in the data. Guan & Plötz also included the extra 

challenge in their research of addressing real-life scenarios 

where missing or erroneous data may be present [5].  
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Fig. 1. Deep Learning Architectures by Lv et al. [2]. 

 

Moya Rueda et al. introduce the CNN-IMU network which 

follows the idea of wider rather than deeper neural networks 

[6]. The CNN-IMU architecture consists of parallel input 

branches that process each of the inertial measurement units 

(IMU) sensor data. Each branch consists of CNN-based 

temporal convolutions, subsequent pooling operations, and an 

additional fully connected layer [6]. For comparison, Moya 

Rueda et al. also implement a baseline CNN architecture that 

resembles that of a single branch CNN-IMU [6]. 

B. Deep Learning in Time Series Classification 

The ideas behind using artificial neural networks and deep 

learning methods to tackle time series classification problems 

originates from two observations or characteristics of deep 

learning techniques. First, deep learning techniques can 

automatically learn high-level representations of raw input or 

training data. This property removes the manual approach to 

feature engineering, which is limited to an individual’s ability 

to engineer features, and instead offers a method where the 

feature engineering process is fully automated and offers a 

more generic solution across classification problems [7]. 

Second, deep learning techniques have been applied across a 

variety of disciplines like computer vision, natural language 

processing, and speech recognition and have been able to 

achieve exceptional results [7]. 

In traditional sensor-based human activity recognition 

approaches, the feature extraction process involves hand-

crafting features to develop a classifier that can recognize 

different types of activities. The drawback of these traditional 

methods is that they rely heavily on human experience or 

domain knowledge [2]. In recent years, with the rapid 

development of deep learning technology, the classification 

performance of human activity recognition based on deep 

learning networks has increased substantially [8]. 

Comparison studies have been conducted to assess the 

effectiveness of deep learning feature extraction techniques 

versus hand-crafted techniques [9]. Results show the 

effectiveness of deep learning methods over hand-crafted 

approaches. Similar results are shown in studies involving 

human forearm motion sensing, where a generalized model for 

movement recognition is introduced that is based on deep 

learning techniques is compared to traditional methods [10]. 

In contrast to previous traditional approaches, another 

researcher asserts that the previous efforts to adopt 

handcrafted features and design prediction models for each 

case, result in low accuracy due to ineffective feature 

representation and the limited training data [11]. Similarly, 

another group of researchers emphasize the same observation 

of artificial neural networks by stating that, most importantly, 

artificial neural networks help overcome several feature 

engineering issues, particularly in the manual definition of 

feature extraction procedures that are often erroneous or 

poorly generalizable. Therefore, the biggest advantage of 

contemporary deep learning methods is their ability to 

simultaneously learn both proper data representations and 

classifiers [5].  

C. Convolutional Neural Networks 

One class of Artificial Neural Network architecture that 

has gained recent attention in the field of time series 

classification is the use of deep neural networks with 

convolutional neural networks (CNN). In many cases, 

researchers precisely cite the performance of convolutional 

neural networks in other fields as the motivation for pursuing 

their research with convolutional neural networks. For 

example, one researcher states that in view of the superiority 

of convolutional neural networks in the field of computer 

vision, the same concept is applied to the classification of five 

mixed gas time series data collected by an array of eight MOX 

gas sensors [12]. 

Several studies have shown improvements in time series 

classification when employing deep convolutional neural 

networks. In one study, deep convolutional neural networks 

ingest different types of signals from body worn sensors like 

electrocardiograms, magnetometers and gyroscopes to predict 

13 different types of activities with improved results [13]. In 

2015, using deep convolutional neural networks, the proposal 

for an automated feature learning method to extract features 

for human activity recognition (HAR) tasks is presented [14]. 

Yang et al. [14] demonstrates that the deep convolutional 

neural network architecture can outperform other HAR 

algorithms through its automatic feature learning and 

classification process. This method is evaluated using the 

opportunity and other benchmark datasets [14]. 

Finally, in another more extensive study looking to 

evaluate the performance of multiple convolutional neural 

network architectures for human activity recognition, 

different performance levels can be achieved by the different 

architectures when training parameters like the learning rate 

or the max-pooling layers are modified [6]. 

D. Residual Neural Networks 

A residual neural network is a feedforward neural network 

with “shortcut connections” that skip one or more layers [15]. 
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The shortcut connection in effect performs identity mapping 

where the outputs are added to the outputs of the stacked 

layers. The shortcut connections to not add extra parameters 

or computational complexity. The entire network can still be 

trained with Stochastic Gradient Descent (SGD) with 

backpropagation using common deep learning libraries [15]. 

He et al. [15] demonstrated that ResNet architectures provide 

better network optimization and increased performance with 

greater layer depths [15]. Although the research by He et al. 

[15] primarily focuses on image classification tasks, the 

concept of the residual neural network can be extended to 

other fields. 

E. Closed-Set Classification Evaluation Metrics 

Time Series Classification models are optimized, 

compared, and evaluated with metrics, like classification 

accuracy, to assess the amount of error that the model’s 

predictions generate. Lines and Bagnall conclude that 

classification accuracy is the most important performance 

metric in time series classification tasks [16]. Classification 

accuracy is therefore one of the main performance metrics 

that will be used in this study to evaluate model performance. 

However, datasets in the field of human activity recognition 

are known to be unbalanced. That is, one or two classes in the 

dataset represent a disproportionate amount of the total data. 

Therefore, the overall classification accuracy is not a suitable 

metric for measuring predictive performance [2]. To 

overcome this issue, a weighted F1-score can be used, which 

takes into consideration the precision and recall for each 

activity. A mean F1-score, which is independent of the class 

distribution in the dataset can also be used. In summary, Lv 

et al. [2] utilizes all three metrics to evaluate model 

performance against the PAMAP2 Physical Activity 

Monitoring Dataset, the classification accuracy, the weighted 

F1-score, and the mean F1-score. Since this study is using the 

same dataset, the same metrics will be computed to evaluate 

and compare the model performance to the results by Lv et 

al. [2], Guan & Plötz [5], and Moya Rueda et al. [6]. 

 

III. PROBLEM, HYPOTHESIS, AND RESEARCH QUESTION 

A. Problem Statement 

The classification performance as measured by the 

weighted F1-score, mean F1-score, and accuracy can be 

improved in the closed-set classification case in the context 

of human activity recognition by introducing residual neural 

network layers that are known to gain increased performance 

with greater neural network depths. 

B. Hypothesis Statement 

The proposed deep learning model with the TSCResNet 

architecture can improve the classification accuracy, weighted 

F1-score, and mean F1-score in the closed-set classification 

problem in the context of human activity recognition. 

C. Research Question 

Can the use of deep learning techniques, particularly with 

the implementation of a residual network architecture and 

convolutional neural networks, in the field of human activity 

recognition lead to improved predictive performance when 

dealing with a closed-set classification task in the context of 

human activity recognition? 

 

IV. METHODOLOGY 

A. Method 

In this study, an alternative deep learning model will be 

proposed to address the closed-set classification problem in 

the context of human activity recognition. Unlike the model 

proposed by Lv et al. [2], this deep learning model architecture 

will not be fully sequential. Instead, the convolutional neural 

network (CNN) blocks will also be connected by utilizing skip 

connections or shortcuts to jump over some layers. This is a 

pattern known as a residual neural network (ResNet), which 

has been used in image classification tasks but has not been 

used in the context of human activity recognition (HAR). 

Additionally, the model proposed in this study will not utilize 

the arcmargin layer and will instead rely on the traditional 

softmax layer to compute the prediction probabilities. The 

same PAMAP2 Physical Activity Monitoring Dataset will be 

used to evaluate the model’s performance and compare it to 

the results by Lv et al. [2], Guan & Plötz [5], and Moya Rueda 

et al. [6]. With the ResNet-based deep learning method 

proposed in this study, it is expected that the classification 

model will improve its performance and therefore provide a 

better model suited for closed-set classification in the field of 

human activity recognition. 

The PAMAP2 Physical Activity Monitoring Dataset was 

introduced in 2012 by researchers in the field of physical 

activity monitoring and activity classification [4]. The dataset 

consists of 18 types of activities performed by 9 subjects 

wearing 3 inertial measurement units (IMUs) and a heart rate 

monitor. The IMUs are placed on the participant’s dominant 

hand, chest, and ankle. Each activity is recorded for as much 

as three minutes. The IMUs captured time series data at a rate 

of 100 samples per second and the heart rate monitor operated 

at a sampling frequency of approximately 9 samples per 

second [4]. Each of the IMUs captured timestamped 

temperature data along with 3-dimensional data from 

gyroscopes, accelerometers, and a magnetometer. The types 

of activities performed by the subjects are lying, sitting, 

standing, ironing, vacuum cleaning, ascending and 

descending stairs, walking, Nordic walking, cycling, running 

and rope jumping.  

As performed in other studies involving the PAMAP2 

Physical Activity Monitoring Dataset, runs 1 and 2 for 

participant 5 will be used for validation, and runs 1 and 2 from 

the sixth participant will be used as the test split [4]. The 

remaining data will be used for training, which encompasses 

approximately 473,000 samples [5]. The performance 

evaluation of the proposed TSCResNet model follows the 

protocols used in previous research. As expressed by Guan 

and Plötz , unconstrained n-fold cross-validation is avoided 

[5]. Instead, fixed hold-out validation and test portions of the 

dataset are separated from the entire dataset. The remaining 

data is used as the training dataset. After each epoch during 

training, the model performance is evaluated with the 

validation set and the model with the best validation-set 

performance is then applied to the test dataset for the final set 

of results. The model performance is evaluated via 3 metrics: 
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the overall classification accuracy (Acc), the mean F1-score 

(Fm), and the weighted F1-score (Fw).  

The computing platform is an 8-core Apple M1 processor 

with 16GB of memory. The TSCResNet model is 

implemented using the PyTorch library in the python 

programming language. The model will be developed in a 

conda virtual environment where all dependencies will be 

managed and the MLflow model tracking library will be used 

to track all training runs.  

B. TSCResNet Architecture 

The Time Series Classification Residual Network 

architecture, or TSCResNet, is proposed in this study as an 

alternative approach to improve the closed-set classification 

performance in the context of human activity recognition. As 

the name suggests, the TSCResNet model incorporates 

residual network components to address time series 

classification problems. Unlike the architectures proposed by 

Lv et al. [2], the TSCResNet architecture will not be fully 

sequential (see Fig. 1 and 2). Instead, the convolutional neural 

network (CNN) layers will also be connected by utilizing skip 

connections or shortcuts to jump over sequential CNN layers. 

This is a pattern known as a residual neural network (ResNet), 

which has been used in computer vision models for object 

detection and image classification but has not been used in the 

context of human activity recognition.  

The TSCResNet architecture consists of three main blocks 

or layers. A CNNBlock, a ResidualBlock, and a 

PredictionBlock. The CNNBlock implements a 1-dimensional 

convolution over an input signal composed of several input 

planes. The CNNBlock is re-used multiple times through the 

entire network and at each implementation, the number of 

input and output channels can be defined. In a single forward 

pass through the block, the outputs of the 1-dimensional 

convolution layer are passed through a 1-dimensional batch 

normalization layer to reduce internal covariance shift and the 

activation function is defined to be a leaky rectified linear unit 

or LeakyReLU with a negative slope of 0.1. Batch 

normalization and a ReLU activation function is also used by 

Lv et al. [2].  

The ResidualBlock component uses multiple CNNBlocks 

in its architecture. The ResidualBlock is defined with a value 

to indicate the number of repetitions that the ResidualBlock 

must build. For 1 repetition, two sequential CNNBlocks are 

linked together. It is in the forward pass through this single 

repetition that the residual nature of this layer is defined. 

When input data is passed through 1 repetition, the input data 

is temporarily saved while an additional copy is passed 

through the two sequential CNNBlocks. Once the output from 

the sequential CNNBlocks returns, it is added to the original 

input data. This process is repeated for each repetition that is 

defined in the creation of the ResidualBlock component. Fig. 

2 illustrates the ResidualBlock architecture described here.  

Finally, the PredictionBlock also consists of a pair of 

sequential CNNBlocks, but in the forward pass through the 

layer, the outputs of the sequential CNNBlocks are shaped 

into an 1-dimensional tensor that represents the predictions for 

the 18 different classes in the dataset. From these predictions, 

the index of the maximum value or argmax is identified along 

the 1×18 dimensional tensor. The index represents a particular 

class from the PAMAP2 Physical Activity Monitoring 

Dataset. Fig. 3 below shows a high-level overview of the 

entire TSCResNet architecture. 

 

 
Fig. 2. A ResidualBlock Architecture for 1 Repetition. 

 

Additionally, the model proposed in this study will not 

utilize additional customized layers like the arcmargin layer 

that Lv et al. introduce to help improve classification results 

on top of the base CNN-M model that they use [2]. 

Additionally, no max-pooling layers or dense layers are part 

of the TSCResNet architecture. Only a softmax function is 

used to transform the model’s outputs to the predicted class 

probabilities. 

 

V. EXPERIMENT AND RESULTS 

A. Experiment Procedures 

The purpose of this study is to improve the classification 

performance in the closed-set classification problem in the 

field of human activity recognition by utilizing ResNet-based 

deep learning techniques. This study will follow an 

experimental design, where the dependent variables are the 

classification performance metrics, accuracy (acc), mean F1-

score (Fm) and weighted F1-score (Fw), and the independent 

variables are the classification models. The models differ in 

the deep learning architectures that they employ to achieve 

their predictive performance. The classification performance 

of the deep learning model proposed in this study will be 

compared to the results by Lv et al. [2], Guan & Plötz [5], and 

Moya Rueda et al. [6].  

The model proposed in this study will be trained and 

evaluated with the PAMAP2 Physical Activity Monitoring 

Dataset. The PAMAP2 Physical Activity Monitoring Dataset 

consists of physical activity data collected by various sensors 

attached to individuals. This study will follow the same train, 

test, and validation splits as in other studies where runs 1 and 

2 for participant 5 will be used for validation and runs 1 and 2 

from the sixth participant will be used as the test split [2]. The 

remaining data will be used for training, which encompasses 

approximately 473,000 samples [5]. All model parameters 

will be randomly initialized at the beginning of each training 

run. The batch size will be set to 16 samples with an initial 

learning rate of 0.0001 and will be trained for 50 epochs.  
 

 
Fig. 3. High-Level Overview of the TSCResNet Architecture. 
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The model architecture and implementation will be developed 

using PyTorch, an open-source machine learning framework 

in the python programming language. Lv et al. [2] also 

implements their models using the pyTorch library with 

similar training hyperparameter settings. 

Several data pre-processing steps are taken to follow the 

same experimental protocols used by other researchers. First, 

the PAMAP2 sensor data is down-sampled to 33.3 Hz to 

match the temporal resolution of other datasets used in similar 

studies. Down-sampling has been used by Guan and Plötz  [5] 

and Lv et al. [2]. Additionally, Reiss & Stricker recommend 

using linear interpolation to deal with wireless data loss 

present in the IMU data [4]. Therefore, linear interpolation is 

also used to fill missing IMU values and missing values in the 

heart rate data. In the case that values are missing from the 

beginning of the sensor recordings, backfilling is used.  

As indicated by Reiss & Stricker, data labeled with activity 

label 0 or other (transient activities) should be discarded in any 

kind of analysis [4]. This data mainly covers transient 

activities between performing different activities e.g. going 

from one location to the next activity’s location or waiting for 

the preparation of some equipment. Similarly, IMU 

orientation data is specified to be invalid in the readme file 

provided by Reiss & Stricker and therefore columns 14-17 

from each of the IMU sensors is discarded [4]. This results in 

40 time series signals that can be used for training. 

Additionally, Reiss & Stricker delete 10 seconds from the 

beginning and the end of each labeled activity to avoid mixing 

with transient activity data [4]. These three data pre-

processing steps are implemented in this study. 

The training, validation, and test datasets are created by 

slicing the time-series data using sliding windows of 5.12 

seconds with 78% overlap between adjacent windows [2]. 

Reiss & Stricker describe this segmentation as using a 5.12 

second sliding window size, shifted by 1 second between 

consecutive windows [4]. This configuration yields 

approximately 14,000, 2,000, and 2,000 time-series data 

frames for the training, validation, and testing sets, 

respectively [2].  

For each sliding window, its corresponding activity label 

is one-hot encoded into a 1-dimensional vector of size 18 as 

there are 18 total activities that are captured by the PAMAP2 

Physical Activity Monitoring dataset. The index of the vector 

represents the activity if at a particular index, the value is 1. 

With one-hot encoding, all other positions in the vector are 

therefore 0.  

For model training purposes, the final train, validation and test 

datasets are reshaped into 3-dimentional tensors before being 

loaded into the training environment. In this study, the 

training, validation, and test datasets are shaped into tensors 

of dimension (N, 40, 172). Where N is the number of windows 

being used for either the training, validation or test datasets. 

40 is the number of signals being passed to the model (i.e. 

temperature, hand, ankle, & chest IMU data) and the 172 

represents the number of timesteps per window to achieve the 

5.12 second window size. The targets or activity labels to 

which these tensors correspond to are of tensor shape (N, 18). 

As described earlier, the target variable or activity labels are 

represented by a 1-dimensional vector of 18; 1 for each 

activity label in the dataset. As an example, a tensor of (100, 

40, 172) for the training data, represents 100 windows 

consisting of 40 IMU signals with 172 timesteps. These 100 

windows correspond to a tensor of (100, 18) to denote the 

activity label for each window.  

The data pre-processing stage in this study resulted in the 

tensors for model training and evaluation as shown in Table I. 

This data is saved into a local directory where it is then 

retrieved by the training environment for a model training run. 

 
TABLE I: TRAINING, VALIDATION, & TEST DATASET SHAPES 

X_train: (12719, 40, 172) y_train: (12719, 18) 

X_val: (2457, 40, 172) y_val: (2457, 18) 
X_test: (2252, 40, 172) y_test: (2252, 18) 

 

During model training, several parameters and tracking 

metrics are setup. The open-source MLflow library and user 

interface is utilized as the tracking component for this study. 

The MLflow tracking component is an API and UI for logging 

parameters, code versions, metrics, and output files when 

running machine learning code and to proactively visualize 

and monitor the results. Each training run uses a python config 

module to load the model hyperparameters and settings. The 

most important parameters are the training batch size, number 

of epochs, the learning rate, and weight decay. Once these 

parameters are loaded into the training environment, they 

tracked with MLflow. Similarly, the most relevant metrics 

tracked by MLFlow are the model’s loss per training epoch 

and the resulting validation and test accuracies, mean F1-

scores and weighted F1-score after each training epoch.  

Once the tracking metrics are setup, the TSCResNet model 

is loaded along with the model optimizer and loss function 

definitions. In this study, the pyTorch Adam optimizer is used 

and initialized with the learning rate and weight decay 

hyperparameters as defined in the python config module. The 

pyTorch CrossEntropyLoss is utilized as the loss function. 

The training data is randomly shuffled and passed through the 

network by the specified batch size.  

B. Closed-Set Results 

In Table II, the performance achieved by various deep 

learning architectures published in recent years by researchers 

in the field of human activity recognition that use the 

PAMAP2 dataset as their benchmarking dataset is compared. 

As shown in Table II, the TSCResNet architecture 

outperforms previous models across all three evaluation 

metrics. Achieving 95.6%, 95.49%, and 95.5% on the acc, Fw, 

and Fm metrics, respectively. Prior to the TSCResNet results, 

the best closed set classification accuracy achieved is 93.74% 

by Lv et al. [2] using their CNN-M model architecture. The 

CNN-M architecture is mainly composed of convolutional 

neural networks (CNN) and a custom arcmargin layer. The 

CNN-M architecture also achieved the greatest Fw score of 

93.75%. However, the Lv et al. [2] Hydrid-M model 

architecture achieved the greatest Fm score of 93.09%. The 

research by Guan & Plötz [5] and Moya Rueda et al. [6] 

achieved good performance as well but did not beat the values 

provided by Lv et al. [2]. The TSCResNet 95.6% 

classification accuracy is visualized in Fig. 3 via a confusion 

matrix showing the counts per predicted activity versus its true 

activity label on the test dataset.  
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TABLE II: CLOSED-SET HAR RESULTS COMPARISON 

Study Architecture 

PAMAP2 
Closed-Set Classification 

Performance 

Acc Fw Fm 

Lv et al. 
(2020) 

CNN-M 93.74% 93.75% 92.95% 

Hybrid-M 93.52% 93.52% 93.09% 

Moya Rueda et 

al. (2018) 

CNN-2 92.55% 92.60% -- 

CNN-IMU-2 93.13% 93.21% -- 

Guan & Plötz 
(2017) 

LSTM Ensemble -- -- 85.40% 

 TSCResNet 95.60% 95.49% 95.50% 

 

C.  Summary 

The overall results demonstrate that the TSCResNet model 

architecture is able to improve upon the performance 

achieved by previous models in the field. As shown in Table 

II, there is a 1.86% improvement in accuracy, a 1.74% 

improvement in the weighted F1-score, and a 2.41% 

improvement in the mean F1-score over the next best models 

per metric.  

 

VI. CONCLUSION 

The results in Table II show that the proposed deep 

learning model with the TSCResNet architecture can improve 

the classification performance across accuracy, weighted F1-

score, and mean F1-score in the closed-set classification 

problem in the context of human activity recognition. 

The classification improvements can be largely attributed 

to the TSCResNet model architecture. The CNN-M model 

used by Lv et al. [2], see Fig. 1, consists of convolutional 

layers followed by non-linear activity and pooling layers. 

There are two main differences between the CNN-M and 

TSCResNet model architectures. First, the TSCResNet model 

does not utilize pooling layers, see Figure 3. As stated by Lv 

et al. [2], the pooling layer performs down sampling which 

produces translational invariance. Instead, the TSCResNet 

model continues layering convolutional neural networks, 

thereby adding depth to the architecture and avoids any 

downsampling of the data, see Fig. 3. The additional CNN 

layers in turn help the model learn and abstract features from 

the data with the additional convolutional kernels. Second, 

the TSCResNet model introduces shortcut connections into 

the architecture where the ResidualBlock shown in Fig. 2 

adds the inputs to the ResidualBlock to the output of the 

sequential convolutional layers. This residual learning 

approach has been studied in computer vision research which 

has shown that these residual networks are easier to optimize 

and can gain accuracy from increased depth [15].  

 

 
Fig. 4. Closet-Set Classification Confusion Matrix. 
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