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Improving the Performance of Closet-Set Classification in
Human Activity Recognition by Applying a Residual
Neural Network Architecture

Daniel Rodriguez Gonzalez and Yanzhen Qu

Abstract — The Time Series Classification Residual Network
(TSCResNet) deep learning model is introduced in this study to
improve the classification performance in the human activity
recognition (HAR) problem. Specifically in the context of closed-
set classification where all labels or classes are present during
the model training phase. This contrasts with open-set
classification where new, unseen activities are introduced to the
HAR system after the training phase. The proposed TSCResNet
model is evaluated with the benchmark PAMAP2 Physical
Activity Monitoring Dataset. By using the same quantitative
methods and data preprocessing protocols as previous research
in the field of closed-set HAR, results show that the TSCResNet
model architecture is able to achieve improved classification
results across accuracy, the weighted F1-score, and mean F1-
score.

Keywords — Closed-set classification, deep learning, human
activity recognition, residual neural networks.

. INTRODUCTION

Time series classification (TSC) involves the acquisition of
time dependent data points and determining, via the use of
machine learning algorithms, if the dataset belongs to a
particular class of known patterns or types of observations [1].
For example, in an assembly line scenario, repetitive motions
are common and can be easily predicted. Even in the case
where there are several types of motions, time series
classification models can accurately predict the type of motion
observed. In closed-set classification, the training data
contains all possible class labels that the machine learning
algorithms can use to learn relationships between the training
data and the class label of the data. Therefore, when the trained
model is deployed to make predictions, the model will only
predict classes present during the model training phase. The
closed-set classification system is also expected to receive
relevant data inputs for prediction or no new or unseen classes.
This contrasts with the open-set classification case, new,
previously unseen activities appear to a human activity
recognition (HAR) system and so different frameworks are
needed to assess classification performance [2].

This study focuses on the closed-set classification problem
in the field of HAR. A new residual deep neural network
architecture, TSCResNet, is proposed in this study with the
aim to improve closed-set classification performance. The
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proposed method will be evaluated with an open-source
dataset, the PAMAP2 Physical Activity Monitoring Dataset
that is made available by the University of California
Riverside (UCR) time series classification and clustering
repository [3], [4]. By evaluating the performance of the
proposed TSCResNet model with a commonly used
standardized dataset in HAR research, it is possible to assess
the effectiveness of this approach versus other methods.

Il. RELATED WORKS

A. Deep Learning Architectures

In a recent publication by Lv et al. [2] deep learning based
models are proposed to address the closed-set classification
problem. An overview of the architectures, as illustrated by Lv
et al. are shown in Fig. 1 [2]. The models consists of five main
components, a set of convolutional neural network (CNN)
layers, a long short-term memory (LSTM) neural network, a
pooling layer, a dense layer, and a custom modification to a
softmax layer, or normalized exponential function, that adds a
customized margin-based method to improve the
classification performance and is therefore referred to as the
arcmargin layer. These components are layered or connected
sequentially to create the overall architecture of their model.
This study focuses on two of the proposed architectures by Lv
et al. [2]. One architecture combines all the components to
create the Hybrid-M architecture, as shown on the bottom left
of Fig. 1, and another only excludes the LSTM layers to create
the CNN-M architecture, as shown in the top left of Fig. 1.
The -M denotes their incorporation of the arcmargin layer. Lv
et al. uses the open-source PAMAP2 Physical Activity
Monitoring Dataset to present their findings and benchmark
their deep learning architectures [2].

Similarly, Guan & P16tz and Moya Rueda et al. propose
deep learning architectures to improve the closed-set
classification performance using the PAMAP2 Physical
Activity Monitoring Dataset [5], [6]. Guan & Pl6tz propose
and ensemble method that consists of long short-term memory
(LSTM) neural networks. LSTMs are a type of recurrent
neural networks (RNN) that can account for sequential
relationships in the data. Guan & P16tz also included the extra
challenge in their research of addressing real-life scenarios
where missing or erroneous data may be present [5].
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Fig. 1. Deep Learning Architectures by Lv et al. [2].

Moya Rueda et al. introduce the CNN-IMU network which
follows the idea of wider rather than deeper neural networks
[6]. The CNN-IMU architecture consists of parallel input
branches that process each of the inertial measurement units
(IMU) sensor data. Each branch consists of CNN-based
temporal convolutions, subsequent pooling operations, and an
additional fully connected layer [6]. For comparison, Moya
Rueda et al. also implement a baseline CNN architecture that
resembles that of a single branch CNN-IMU [6].

B. Deep Learning in Time Series Classification

The ideas behind using artificial neural networks and deep
learning methods to tackle time series classification problems
originates from two observations or characteristics of deep
learning techniques. First, deep learning techniques can
automatically learn high-level representations of raw input or
training data. This property removes the manual approach to
feature engineering, which is limited to an individual’s ability
to engineer features, and instead offers a method where the
feature engineering process is fully automated and offers a
more generic solution across classification problems [7].
Second, deep learning techniques have been applied across a
variety of disciplines like computer vision, natural language
processing, and speech recognition and have been able to
achieve exceptional results [7].

In traditional sensor-based human activity recognition
approaches, the feature extraction process involves hand-
crafting features to develop a classifier that can recognize
different types of activities. The drawback of these traditional
methods is that they rely heavily on human experience or
domain knowledge [2]. In recent years, with the rapid
development of deep learning technology, the classification
performance of human activity recognition based on deep
learning networks has increased substantially [8].

Comparison studies have been conducted to assess the
effectiveness of deep learning feature extraction techniques
versus hand-crafted techniques [9]. Results show the
effectiveness of deep learning methods over hand-crafted
approaches. Similar results are shown in studies involving
human forearm motion sensing, where a generalized model for
movement recognition is introduced that is based on deep
learning techniques is compared to traditional methods [10].

In contrast to previous traditional approaches, another
researcher asserts that the previous efforts to adopt
handcrafted features and design prediction models for each
case, result in low accuracy due to ineffective feature
representation and the limited training data [11]. Similarly,
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another group of researchers emphasize the same observation
of artificial neural networks by stating that, most importantly,
artificial neural networks help overcome several feature
engineering issues, particularly in the manual definition of
feature extraction procedures that are often erroneous or
poorly generalizable. Therefore, the biggest advantage of
contemporary deep learning methods is their ability to
simultaneously learn both proper data representations and
classifiers [5].

C. Convolutional Neural Networks

One class of Artificial Neural Network architecture that
has gained recent attention in the field of time series
classification is the use of deep neural networks with
convolutional neural networks (CNN). In many cases,
researchers precisely cite the performance of convolutional
neural networks in other fields as the motivation for pursuing
their research with convolutional neural networks. For
example, one researcher states that in view of the superiority
of convolutional neural networks in the field of computer
vision, the same concept is applied to the classification of five
mixed gas time series data collected by an array of eight MOX
gas sensors [12].

Several studies have shown improvements in time series
classification when employing deep convolutional neural
networks. In one study, deep convolutional neural networks
ingest different types of signals from body worn sensors like
electrocardiograms, magnetometers and gyroscopes to predict
13 different types of activities with improved results [13]. In
2015, using deep convolutional neural networks, the proposal
for an automated feature learning method to extract features
for human activity recognition (HAR) tasks is presented [14].
Yang et al. [14] demonstrates that the deep convolutional
neural network architecture can outperform other HAR
algorithms through its automatic feature learning and
classification process. This method is evaluated using the
opportunity and other benchmark datasets [14].

Finally, in another more extensive study looking to
evaluate the performance of multiple convolutional neural
network architectures for human activity recognition,
different performance levels can be achieved by the different
architectures when training parameters like the learning rate
or the max-pooling layers are modified [6].

D. Residual Neural Networks

A residual neural network is a feedforward neural network
with “shortcut connections” that skip one or more layers [15].
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The shortcut connection in effect performs identity mapping
where the outputs are added to the outputs of the stacked
layers. The shortcut connections to not add extra parameters
or computational complexity. The entire network can still be
trained with Stochastic Gradient Descent (SGD) with
backpropagation using common deep learning libraries [15].
He et al. [15] demonstrated that ResNet architectures provide
better network optimization and increased performance with
greater layer depths [15]. Although the research by He et al.
[15] primarily focuses on image classification tasks, the
concept of the residual neural network can be extended to
other fields.

E. Closed-Set Classification Evaluation Metrics

Time Series Classification models are optimized,
compared, and evaluated with metrics, like classification
accuracy, to assess the amount of error that the model’s
predictions generate. Lines and Bagnall conclude that
classification accuracy is the most important performance
metric in time series classification tasks [16]. Classification
accuracy is therefore one of the main performance metrics
that will be used in this study to evaluate model performance.
However, datasets in the field of human activity recognition
are known to be unbalanced. That is, one or two classes in the
dataset represent a disproportionate amount of the total data.
Therefore, the overall classification accuracy is not a suitable
metric for measuring predictive performance [2]. To
overcome this issue, a weighted F1-score can be used, which
takes into consideration the precision and recall for each
activity. A mean F1-score, which is independent of the class
distribution in the dataset can also be used. In summary, Lv
et al. [2] utilizes all three metrics to evaluate model
performance against the PAMAP2 Physical Activity
Monitoring Dataset, the classification accuracy, the weighted
F1-score, and the mean F1-score. Since this study is using the
same dataset, the same metrics will be computed to evaluate
and compare the model performance to the results by Lv et
al. [2], Guan & P16tz [5], and Moya Rueda et al. [6].

I1l. PROBLEM, HYPOTHESIS, AND RESEARCH QUESTION

A. Problem Statement

The classification performance as measured by the
weighted F1-score, mean F1-score, and accuracy can be
improved in the closed-set classification case in the context
of human activity recognition by introducing residual neural
network layers that are known to gain increased performance
with greater neural network depths.

B. Hypothesis Statement

The proposed deep learning model with the TSCResNet
architecture can improve the classification accuracy, weighted
F1-score, and mean F1-score in the closed-set classification
problem in the context of human activity recognition.

C. Research Question

Can the use of deep learning techniques, particularly with
the implementation of a residual network architecture and
convolutional neural networks, in the field of human activity
recognition lead to improved predictive performance when
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dealing with a closed-set classification task in the context of
human activity recognition?

IV. METHODOLOGY

A. Method

In this study, an alternative deep learning model will be
proposed to address the closed-set classification problem in
the context of human activity recognition. Unlike the model
proposed by Lv et al. [2], this deep learning model architecture
will not be fully sequential. Instead, the convolutional neural
network (CNN) blocks will also be connected by utilizing skip
connections or shortcuts to jump over some layers. This is a
pattern known as a residual neural network (ResNet), which
has been used in image classification tasks but has not been
used in the context of human activity recognition (HAR).
Additionally, the model proposed in this study will not utilize
the arcmargin layer and will instead rely on the traditional
softmax layer to compute the prediction probabilities. The
same PAMAP2 Physical Activity Monitoring Dataset will be
used to evaluate the model’s performance and compare it to
the results by Lv et al. [2], Guan & Plétz [5], and Moya Rueda
et al. [6]. With the ResNet-based deep learning method
proposed in this study, it is expected that the classification
model will improve its performance and therefore provide a
better model suited for closed-set classification in the field of
human activity recognition.

The PAMAP2 Physical Activity Monitoring Dataset was
introduced in 2012 by researchers in the field of physical
activity monitoring and activity classification [4]. The dataset
consists of 18 types of activities performed by 9 subjects
wearing 3 inertial measurement units (IMUs) and a heart rate
monitor. The IMUs are placed on the participant’s dominant
hand, chest, and ankle. Each activity is recorded for as much
as three minutes. The IMUs captured time series data at a rate
of 100 samples per second and the heart rate monitor operated
at a sampling frequency of approximately 9 samples per
second [4]. Each of the IMUs captured timestamped
temperature data along with 3-dimensional data from
gyroscopes, accelerometers, and a magnetometer. The types
of activities performed by the subjects are lying, sitting,
standing, ironing, vacuum cleaning, ascending and
descending stairs, walking, Nordic walking, cycling, running
and rope jumping.

As performed in other studies involving the PAMAP2
Physical Activity Monitoring Dataset, runs 1 and 2 for
participant 5 will be used for validation, and runs 1 and 2 from
the sixth participant will be used as the test split [4]. The
remaining data will be used for training, which encompasses
approximately 473,000 samples [5]. The performance
evaluation of the proposed TSCResNet model follows the
protocols used in previous research. As expressed by Guan
and Plotz , unconstrained n-fold cross-validation is avoided
[5]. Instead, fixed hold-out validation and test portions of the
dataset are separated from the entire dataset. The remaining
data is used as the training dataset. After each epoch during
training, the model performance is evaluated with the
validation set and the model with the best validation-set
performance is then applied to the test dataset for the final set
of results. The model performance is evaluated via 3 metrics:
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the overall classification accuracy (Acc), the mean F1-score
(Fm), and the weighted F1-score (Fw).

The computing platform is an 8-core Apple M1 processor
with 16GB of memory. The TSCResNet model is
implemented using the PyTorch library in the python
programming language. The model will be developed in a
conda virtual environment where all dependencies will be
managed and the MLflow model tracking library will be used
to track all training runs.

B. TSCResNet Architecture

The Time Series Classification Residual Network
architecture, or TSCResNet, is proposed in this study as an
alternative approach to improve the closed-set classification
performance in the context of human activity recognition. As
the name suggests, the TSCResNet model incorporates
residual network components to address time series
classification problems. Unlike the architectures proposed by
Lv et al. [2], the TSCResNet architecture will not be fully
sequential (see Fig. 1 and 2). Instead, the convolutional neural
network (CNN) layers will also be connected by utilizing skip
connections or shortcuts to jump over sequential CNN layers.
This is a pattern known as a residual neural network (ResNet),
which has been used in computer vision models for object
detection and image classification but has not been used in the
context of human activity recognition.

The TSCResNet architecture consists of three main blocks
or layers. A CNNBlock, a ResidualBlock, and a
PredictionBlock. The CNNBIlock implements a 1-dimensional
convolution over an input signal composed of several input
planes. The CNNBIock is re-used multiple times through the
entire network and at each implementation, the number of
input and output channels can be defined. In a single forward
pass through the block, the outputs of the 1-dimensional
convolution layer are passed through a 1-dimensional batch
normalization layer to reduce internal covariance shift and the
activation function is defined to be a leaky rectified linear unit
or LeakyReLU with a negative slope of 0.1. Batch
normalization and a ReL U activation function is also used by
Lvetal. [2].

The ResidualBlock component uses multiple CNNBlocks
in its architecture. The ResidualBlock is defined with a value
to indicate the number of repetitions that the ResidualBlock
must build. For 1 repetition, two sequential CNNBIlocks are
linked together. It is in the forward pass through this single
repetition that the residual nature of this layer is defined.
When input data is passed through 1 repetition, the input data
is temporarily saved while an additional copy is passed
through the two sequential CNNBIlocks. Once the output from
the sequential CNNBIocks returns, it is added to the original
input data. This process is repeated for each repetition that is
defined in the creation of the ResidualBlock component. Fig.
2 illustrates the ResidualBlock architecture described here.

Finally, the PredictionBlock also consists of a pair of
sequential CNNBlocks, but in the forward pass through the
layer, the outputs of the sequential CNNBIlocks are shaped
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into an 1-dimensional tensor that represents the predictions for
the 18 different classes in the dataset. From these predictions,
the index of the maximum value or argmax is identified along
the 1x18 dimensional tensor. The index represents a particular
class from the PAMAP2 Physical Activity Monitoring
Dataset. Fig. 3 below shows a high-level overview of the
entire TSCResNet architecture.

ResidualBlock — 1 Repetition

Input Add Output

\ CNNBlock —— CNNBlock

Fig. 2. A ResidualBlock Architecture for 1 Repetition.

Additionally, the model proposed in this study will not
utilize additional customized layers like the arcmargin layer
that Lv et al. introduce to help improve classification results
on top of the base CNN-M model that they use [2].
Additionally, no max-pooling layers or dense layers are part
of the TSCResNet architecture. Only a softmax function is
used to transform the model’s outputs to the predicted class
probabilities.

V. EXPERIMENT AND RESULTS

A. Experiment Procedures

The purpose of this study is to improve the classification
performance in the closed-set classification problem in the
field of human activity recognition by utilizing ResNet-based
deep learning techniques. This study will follow an
experimental design, where the dependent variables are the
classification performance metrics, accuracy (acc), mean F1-
score (Fm) and weighted F1-score (Fw), and the independent
variables are the classification models. The models differ in
the deep learning architectures that they employ to achieve
their predictive performance. The classification performance
of the deep learning model proposed in this study will be
compared to the results by Lv et al. [2], Guan & Plétz [5], and
Moya Rueda et al. [6].

The model proposed in this study will be trained and
evaluated with the PAMAP2 Physical Activity Monitoring
Dataset. The PAMAP2 Physical Activity Monitoring Dataset
consists of physical activity data collected by various sensors
attached to individuals. This study will follow the same train,
test, and validation splits as in other studies where runs 1 and
2 for participant 5 will be used for validation and runs 1 and 2
from the sixth participant will be used as the test split [2]. The
remaining data will be used for training, which encompasses
approximately 473,000 samples [5]. All model parameters
will be randomly initialized at the beginning of each training
run. The batch size will be set to 16 samples with an initial
learning rate of 0.0001 and will be trained for 50 epochs.

CNNBlock —| ResidualBlock —| CNNBlock |—| ResidualBlock
X2 x2

¥

CNNBIlock — ResidualBlock —{ CNNBlock — PredictionBlock

x8

Fig. 3. High-Level Overview of the TSCResNet Architecture.
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The model architecture and implementation will be developed
using PyTorch, an open-source machine learning framework
in the python programming language. Lv et al. [2] also
implements their models using the pyTorch library with
similar training hyperparameter settings.

Several data pre-processing steps are taken to follow the
same experimental protocols used by other researchers. First,
the PAMAP2 sensor data is down-sampled to 33.3 Hz to
match the temporal resolution of other datasets used in similar
studies. Down-sampling has been used by Guan and Plotz [5]
and Lv et al. [2]. Additionally, Reiss & Stricker recommend
using linear interpolation to deal with wireless data loss
present in the IMU data [4]. Therefore, linear interpolation is
also used to fill missing IMU values and missing values in the
heart rate data. In the case that values are missing from the
beginning of the sensor recordings, backfilling is used.

As indicated by Reiss & Stricker, data labeled with activity
label O or other (transient activities) should be discarded in any
kind of analysis [4]. This data mainly covers transient
activities between performing different activities e.g. going
from one location to the next activity’s location or waiting for
the preparation of some equipment. Similarly, IMU
orientation data is specified to be invalid in the readme file
provided by Reiss & Stricker and therefore columns 14-17
from each of the IMU sensors is discarded [4]. This results in
40 time series signals that can be used for training.
Additionally, Reiss & Stricker delete 10 seconds from the
beginning and the end of each labeled activity to avoid mixing
with transient activity data [4]. These three data pre-
processing steps are implemented in this study.

The training, validation, and test datasets are created by
slicing the time-series data using sliding windows of 5.12
seconds with 78% overlap between adjacent windows [2].
Reiss & Stricker describe this segmentation as using a 5.12
second sliding window size, shifted by 1 second between
consecutive windows [4]. This configuration yields
approximately 14,000, 2,000, and 2,000 time-series data
frames for the training, validation, and testing sets,
respectively [2].

For each sliding window, its corresponding activity label
is one-hot encoded into a 1-dimensional vector of size 18 as
there are 18 total activities that are captured by the PAMAP2
Physical Activity Monitoring dataset. The index of the vector
represents the activity if at a particular index, the value is 1.
With one-hot encoding, all other positions in the vector are
therefore 0.

For model training purposes, the final train, validation and test
datasets are reshaped into 3-dimentional tensors before being
loaded into the training environment. In this study, the
training, validation, and test datasets are shaped into tensors
of dimension (N, 40, 172). Where N is the number of windows
being used for either the training, validation or test datasets.
40 is the number of signals being passed to the model (i.e.
temperature, hand, ankle, & chest IMU data) and the 172
represents the number of timesteps per window to achieve the
5.12 second window size. The targets or activity labels to
which these tensors correspond to are of tensor shape (N, 18).
As described earlier, the target variable or activity labels are
represented by a 1-dimensional vector of 18; 1 for each
activity label in the dataset. As an example, a tensor of (100,
40, 172) for the training data, represents 100 windows
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consisting of 40 IMU signals with 172 timesteps. These 100
windows correspond to a tensor of (100, 18) to denote the
activity label for each window.

The data pre-processing stage in this study resulted in the
tensors for model training and evaluation as shown in Table I.
This data is saved into a local directory where it is then
retrieved by the training environment for a model training run.

TABLE I: TRAINING, VALIDATION, & TEST DATASET SHAPES

X_train: (12719, 40, 172) y_train: (12719, 18)
X_val: (2457, 40, 172) y_val: (2457, 18)
X _test: (2252, 40, 172) y test: (2252, 18)

During model training, several parameters and tracking
metrics are setup. The open-source MLflow library and user
interface is utilized as the tracking component for this study.
The MLflow tracking component is an API and Ul for logging
parameters, code versions, metrics, and output files when
running machine learning code and to proactively visualize
and monitor the results. Each training run uses a python config
module to load the model hyperparameters and settings. The
most important parameters are the training batch size, number
of epochs, the learning rate, and weight decay. Once these
parameters are loaded into the training environment, they
tracked with MLflow. Similarly, the most relevant metrics
tracked by MLFlow are the model’s loss per training epoch
and the resulting validation and test accuracies, mean F1-
scores and weighted F1-score after each training epoch.

Once the tracking metrics are setup, the TSCResNet model
is loaded along with the model optimizer and loss function
definitions. In this study, the pyTorch Adam optimizer is used
and initialized with the learning rate and weight decay
hyperparameters as defined in the python config module. The
pyTorch CrossEntropyLoss is utilized as the loss function.
The training data is randomly shuffled and passed through the
network by the specified batch size.

B. Closed-Set Results

In Table Il, the performance achieved by various deep
learning architectures published in recent years by researchers
in the field of human activity recognition that use the
PAMAP?2 dataset as their benchmarking dataset is compared.
As shown in Table II, the TSCResNet architecture
outperforms previous models across all three evaluation
metrics. Achieving 95.6%, 95.49%, and 95.5% on the acc, Fw,
and Fm metrics, respectively. Prior to the TSCResNet results,
the best closed set classification accuracy achieved is 93.74%
by Lv et al. [2] using their CNN-M maodel architecture. The
CNN-M architecture is mainly composed of convolutional
neural networks (CNN) and a custom arcmargin layer. The
CNN-M architecture also achieved the greatest Fw score of
93.75%. However, the Lv et al. [2] Hydrid-M model
architecture achieved the greatest Fm score of 93.09%. The
research by Guan & Plotz [5] and Moya Rueda et al. [6]
achieved good performance as well but did not beat the values
provided by Lv et al. [2]. The TSCResNet 95.6%
classification accuracy is visualized in Fig. 3 via a confusion
matrix showing the counts per predicted activity versus its true
activity label on the test dataset.
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TABLE II: CLOSED-SET HAR RESULTS COMPARISON

PAMAP2

Closed-Set Classification

Study Architecture Performance
Acc Fw Fm
Lvetal. CNN-M 93.74%  93.75%  92.95%
(2020) Hybrid-M 93.52%  93.52%  93.09%
Moya Rueda et CNN-2 92.55%  92.60% --
al. (2018) CNN-IMU-2 93.13%  93.21% -
Guan & Plotz o
(2017) LSTM Ensemble -- -- 85.40%
TSCResNet 95.60%  95.49%  95.50%
C. Summary

The overall results demonstrate that the TSCResNet model
architecture is able to improve upon the performance
achieved by previous models in the field. As shown in Table
Il, there is a 1.86% improvement in accuracy, a 1.74%
improvement in the weighted F1-score, and a 2.41%
improvement in the mean F1-score over the next best models
per metric.

VI.

The results in Table Il show that the proposed deep
learning model with the TSCResNet architecture can improve

CONCLUSION
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the classification performance across accuracy, weighted F1-
score, and mean Fl1-score in the closed-set classification
problem in the context of human activity recognition.

The classification improvements can be largely attributed
to the TSCResNet model architecture. The CNN-M model
used by Lv et al. [2], see Fig. 1, consists of convolutional
layers followed by non-linear activity and pooling layers.
There are two main differences between the CNN-M and
TSCResNet model architectures. First, the TSCResNet model
does not utilize pooling layers, see Figure 3. As stated by Lv
et al. [2], the pooling layer performs down sampling which
produces translational invariance. Instead, the TSCResNet
model continues layering convolutional neural networks,
thereby adding depth to the architecture and avoids any
downsampling of the data, see Fig. 3. The additional CNN
layers in turn help the model learn and abstract features from
the data with the additional convolutional kernels. Second,
the TSCResNet model introduces shortcut connections into
the architecture where the ResidualBlock shown in Fig. 2
adds the inputs to the ResidualBlock to the output of the
sequential convolutional layers. This residual learning
approach has been studied in computer vision research which
has shown that these residual networks are easier to optimize
and can gain accuracy from increased depth [15].
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Fig. 4. Closet-Set Classification Confusion Matrix.
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