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Abstract — Technological advancement has made robots 

become rampant in industrial automation and globalization, as 
it’s fast and efficient in delivering tasks in industries with no 
supervision. This work shows the use of blockchain technology 
(smart contract) in controlling a swarm of robots combined with 
particle swarm optimization for solving the navigation path. The 
technique in this research modeled a new fitness function, that 
uses the optimal path generation and barrier avoidance for the 
mobile robot’s movement within the swarm, while the 
blockchain smart contract was integrated to control the robot’s 
speed. Simulated results validate path optimization and speed 
control with PSO and BT. 
 

Keywords — Autonomous Mobile Robot, Blockchain 
Technology (BT), Particle Swarm Optimization (PSO), 
Robotchain, Smart Contract (SC), Swarm Robotics. 
 

I. INTRODUCTION 
Robots are becoming rampant in industrial automation, 

especially in a major task that is collectively carried out by 
humans in factories and other day-to-day activities. This 
involves several tasks such as fixing bolts to devices, 
movement of devices, selection of products, and rendering of 
services. In the early integration of robots in industry 
globalization, these tasks carried out by robots are being 
supervised by a human in order for the robotics to deliver 
optimally on their actions. This demonstrated the part of 
Human-Robot Interaction (HRI) in the early stage of 
industrial globalization, where the major work carried out by 
robots needs to be supervised and control manually [1]. 

The modern industrial and automation application cannot 
be carried out by a single robot, but by a collaborative work 
of the robot. Application using collaborative works of robots 
has now been in their dominant phase for industrial expansion 
and automation. The new era of robot collective labor is 
mostly for group tasks that cannot be completed by a single 
robot. It entails workplace monitoring in some factories in 
order to avoid collisions through the use of vision-based 
reactive planning  [2] or external sensors that utilize the 
robot's distance from humans to halt it [3]. Other 
implementations employ pressure sensors to stop or slow 
down the robot when there is a space violation [4]. Robotic 
swarming is a multi-robot field in which a large number of 
robots are coordinated and controlled in a dispersed and 
decentralized manner to complete a set of tasks. It is based on 
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the employment of local rules and basic robots in a swarm to 
improve communication and productivity in relation to the 
job complexity. 

A hard task done by social insects with a unique sense of 
cooperation and collaboration based on a large number of 
basic robots that can complete difficult tasks more effectively 
than a single robot, giving strength and flexibility to the team, 
inspired the study of swarm robotics. Many applications and 
existing robotic integration methods might be disrupted by 
swarm robotics. The robot swarm is strong and adaptable 
because each robot in the swarm can perform independent 
operations and can be programmed to do a range of jobs 
without requiring physical change [5]. The information 
transferred between the nodes determines the success of a 
swarm of robots. One of their most significant issues is the 
use of local vs global information and control methods in 
robotic networks [6]. Because each robot in the swarm has 
limited detecting and computational capability, it is 
impossible for it to have a full perspective of the whole swarm 
system. A swarm of robots, unlike a single robot that fails 
during a single operation, will not fail during the execution of 
the activity. 

Blockchain technology was introduced by Satoshi 
Nakamoto to implement the cryptocurrency known as Bitcoin 
in 2008. Since their inception, both have grown in terms of 
worldwide adoption, overall value, levels, and popularity [7]. 
This paved the way for researchers to study them. The 
impending value of blockchain is not only holding 
cryptocurrencies for financial purposes but also allowing the 
combination of a large number of different networks on the 
same defined platform in a secure and decentralized way to 
achieve uniformity in results [8]. The creation of Ethereum 
was proposed in 2013 as the second stage in the advancement 
of blockchain technology [9] It introduced new features in 
blockchain technology, such as smart contracts (this is a set 
of rules that are applied in real time on the blockchain, when 
certain contract submission conditions are met.) and proof of 
authority, giving it the dominant power to integrate more 
services and have more value across many disciplines and 
areas of academic research. In the field of robotics, where 
integration with blockchain is still in its infancy, there are few 
approaches that show how the two technologies can be used 
together to overcome the challenges. The introduction of 
blockchain technologies in robotic systems, especially in a 
large number of robots, can solve many of the problems 
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facing systems [10] The problem to be solved is not limited 
to the following: The first issue it can address is security: 
while many systems suffer from data integrity and 
dependability difficulties, blockchain can allow secure peer-
to-peer connection over an untrustworthy network. Another 
benefit of this integration is the ability to make distributed 
decisions in the swarm system, as blockchain can ensure that 
all participants in a decentralized network share the same 
views of the connected system. 

Blockchain technology's applications and widespread 
adoption in the sector are currently getting extensive 
attention. For information security, we can use blockchains in 
Industrial Control Systems (ICS). Blockchain's core 
technologies, including as distributed ledgers, asymmetric 
cryptography, consensus algorithms, and smart contracts, can 
be applied in domains other than cryptocurrencies. The 
technology, with its inherent distinguishing characteristics of 
decentralization, security, immutability, transparency, and 
high availability, can increase robotic swarm collaboration 
and decision-making. The proper use of blockchain 
technologies to robotic systems could overcome a number of 
issues that these systems currently face. [11] Shows how to 
create a blockchain and keep robotic events on it. This 
approach allows for the creation of smart contracts that 
employ data acquired in the wild by various robots and 
initiate actions based on the contracts recorded and validated 
on the blockchain network. This can increase industrial 
output and save time spent on tasks such as replacing tools 
for a robot that used the blockchain to convey its need for new 
tools to continue working. 

As a continuation of past work, we suggest the 
establishment of a blockchain for robotic event registration 
using Tezos’s technology [12], It makes use of the enhanced 
security provided by Tezos' explicit verification system. This 
ongoing work will support smart contracts that execute AI 
code on the blockchain and have been verified to be valid (to 
do exactly what their specification defines). They also want 
to adapt the blockchain to allow for several more transactions 
per second than the present standard permits, allowing the 
system to accommodate a large number of interacting robots. 
One such example may be found in an Amazon warehouse, 
where an army of robots works together to run the facility. 

The benefits of merging blockchain technology with 
robotics, particularly swarm robotics and robotic hardware, 
are presented in a study undertaken by [13]. Both the 
simplicity of scalability and the durability against failure are 
advantages of robotic swarms. These benefits stem from the 
fact that these swarms' members are dispersed. We can also 
see how the industrial sector is increasing and allowing 
enterprises to reach increased productivity. One of the major 
issues in robotic swarms is that robots employ local 
information, that implies how they only have knowledge 
about themselves and/or other robots in their immediate 
vicinity. If blockchain is incorporated into these systems, 
however, it may be able to send global information to the 
robots, allowing all of the robots in the system to collaborate. 
It could provide the robots global knowledge, allowing all 
robots in the system to be aware of all shared data, which 
might be useful in a number of situations. Because global 
information enables the entire system to instantly adapt 
behavior in response to particular robot requests, blockchain 

integration can help the system change behavior more 
quickly. This might be accomplished using a controller robot 
that uses blockchain data to evaluate the status of the system 
and subsequently commits the changes to the blockchain. 
Higher productivity and autonomous robot’s swarms could 
result from these enhancements and the system's global 
information. Robotic swarm, anti-collision, and obstacle 
avoidance are critical for task implementation. 

In this work, the robotics system will be combined with 
blockchain technology to achieve autonomous robot swarms 
for workspace monitoring, as well as particle swarm 
optimization to solve the mobile robot navigation path. The 
method used in this study optimizes the path generated by 
intelligent mobile robots within a workplace from their origin 
to their destination without colliding. To achieve the desired 
outcome, a novel fitness function was developed that satisfies 
obstacle avoidance and optimal path generation for the 
swarm's robots, while a blockchain smart contract was 
incorporated to manage the robots' speed during navigation. 

 

II. MATERIALS AND METHODS 

A. Proposed Methodology Overview 
Using blockchain technology, the approach described in 

this work of directing robots to communicate worldwide as 
opposed to local accessibility of robots with each other in a 
swarm and avoid collisions while delivering tasks. Even 
though the robots will be equipped with sensors to detect the 
presence of other members in their region in order to avoid 
collisions, it is critical to force the robots to stop or change 
direction in the shortest path possible before a collision 
occurs, ensuring that no damage is done to the other robot or 
the material picked or carried. A PSO method would be used 
to obtain the robot pathways in order to achieve the desired 
result. 

B. Mobile Robot Navigation Architecture 
By establishing a fitness function that converts the problem 

into a minimization problem, PSO would be used to navigate 
swarm mobile robots. Two conditions will be considered in 
order to achieve our desired results and robot movement 
efficiency first, the robot must develop trajectories by 
escaping traps and avoiding obstacles; and second, the robot 
must get to its destination by covering a small distance in the 
shortest time feasible. This method will employ the defined 
system architecture to develop optimal travel paths for an 
autonomous mobile robot. 
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Fig. 1. Robot navigation framework [14]. 

 
Initially, without utilizing any intelligence techniques, the 

robots move in diverse directions directly towards the goal. 
When a robot's sensor detects another robot on its route, the 
PSO algorithm is immediately activated to find a suitable path 
to avoid collision and achieve the target in the shortest time 
possible. Fig. 5 shows how the suggested PSO algorithm 
allows the robot to entirely avoid the barrier and follow the 
desired path. 

C. Mathematical Modelling of PSO 
Individuals are referred to as particles in PSO, while the 

population is referred to as a swarm. So, in PSO, a swarm is 
defined as a set R = Q1, Q2, Q3 to Qn. The Q1, Q2, Q3 to Qn 
are the swarm's particles numbers symbolized with ’n’. The 
predefined particles are thought to travel inside the search 
space. Using an appropriate position shift termed velocity, the 
particles' new locations may be updated while they are going. 
Using the sent information of particles inside the swarm, the 
latest speed of every particle is determined. It may be done 
using memory, in which each particle saves the best spot it 
finds during its search. The best position is denoted by Ypbest 
and refers to the ideal location as decided by each particle. As 
a consequence, the swarm's 'n' particles have a total of 'n' ideal 
location values. The swarm's particles are exchanging 
information and will ultimately converge on a single global 
optimal location, which will be visited by all particles. The 
global optimal location may be determined by determining 
the fitness function of an individual particle in the swarm. The 
global best position, which is indicated by the symbol Ygbest, 
might be regarded as the particle with the best fitness. The 
decision of Ygbest indicates when a PSO iteration is 
complete. This approach will be performed till the robot 
arrives at its target or until the maximum number of iterations 
is achieved. Following the discovery of each Ypbest and 
swarm Ygbest, both the velocity and location of each particle 
would be updated using (1) and (2). 

 
𝑣!(𝑗 + 1) = 𝑣!(𝑗) + 𝐶" ∗ 	rand	1 ∗ /𝑌#$%&'	 − 𝑥!3 + 𝐶) ∗
	rand	2 ∗ /𝑌*$%&'	 − 𝑥+3    (1) 
 
𝑥!(𝑗 + 1) = 𝑥! + 𝑣!(𝑗 + 1)   (2) 
 

The iteration counter is represented by j; rands represent 
random variables while cognitive and social factors are given 
C1 and C2. 
 

III. SYSTEM OPERATION AND STRUCTURE 
Fig. 2 depicts the architecture for the suggested 

technique. It is made up of the RobotChain ledger, which 
includes smart contracts that run code to generate a robot 
state. A controlling unit sends data from the robot's condition, 
such as location, velocity, and energy, as well as imagery 
from a webcam that inspects the place where the packages 
must be picked, to the RobotChain. Both have access to the 
same computing unit in this situation, but this has no bearing 
on the processing or the blockchain because they are 
processed individually. We just record the robotic events 
(logs) and a tuple consisting of a Hash and an ID that reflects 
the picture of the packages on the blockchain because it can 
quickly grow in size. A database is used to store the image. 
The Hash of the photos adds protection to the database, which 
can be easily corrupted if not produced properly, because the 
information saved in the blockchain cannot be changed. A 
trusted external Oracle uses the information on the 
blockchain to process the photos and determine number of 
packages present. This data is then sent to a smart contract, 
which decides whether the robot should return to its home 
location, signaling that there are no more parcels to pick, or 
slow down or speed up, indicating that there are few or many 
packages to pick. 

 

 
Fig. 2. System Operational Block Diagram 

 

A. RobotChain Module 
RobotChain would be utilized as a decentralized database 

to safely and quickly retain robotic activities and other data. 
RobotChain is a collaborative blockchain developed for 
industrial applications that can manage a high volume of 
transaction activities per second and uses off-chain 
mechanisms to deal with blockchains' exponential expansion. 
[12]. Oracles would be used to process images, with smart 
contracts handling data storage and logic for controlling 
robots. The robots were modeled and experiments were 
conducted using MATLAB. This universal technique may be 
used to control any robot in the swarm as long as the robot 
allows external instructions to change its speed and location, 
and halt it. Smart contracts autonomously conduct response 
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action when the requirements for them are satisfied, therefore 
this technology is particularly useful since it does not require 
involvement from a central authority to operate the robots. 
One of the techniques' unique features is how easy it is to 
maintain and adapt to new robots and assignments. To 
achieve this goal, and address the additional needs, simply 
establish a new smart contract. 

B. Fitness Function Development 
By establishing a fitness function that converts the problem 

into a minimization problem, PSO would be used to navigate 
swarm mobile robots. Two conditions will be considered in 
order to achieve our desired results and robot movement 
efficiency first, the robot must develop trajectories by 
escaping traps and avoiding obstacles; second, the robot must 
get to its destination by covering a small distance in the 
shortest time feasible. This method will employ the defined 
system architecture to develop optimal travel paths for an 
autonomous mobile robot. During the robot's navigation to 
the objective. If there are no barriers in the robot's 
environment, it can travel toward its target. As a result, no 
adaptive mechanism is required to move the robot inside its 
working area. However, generating paths for an autonomous 
mobile robot that detects impediments in its environment is a 
challenging task. When the robot detects impediments in its 
work region, the current research study proposes a PSO 
structured system for achieving optimum route trajectories. 
The fitness function must be modeled to match the following 
conditions when determining the fitness value of individual 
particle in the swarm: 

As a primary priority, the particle's fitness should keep it 
as far away from the nearest hindrance as possible; in other 
phrases, the fitness function is straightforwardly relative to 
the particle’s location from the nearest obstacle. As a result 
of this situation, a repulsive force is formed between both the 
particle and the hindrance. 
 
𝐹" ∝ /1/𝑑𝑖𝑠𝑡,!-./3 for 1 ≤ 𝑖 ≤ 𝑛   (3) 
 

where 𝑑𝑖𝑠𝑡,!-./	as used above indicates the distance 
between ith particle and the nearest hindrance. 

Secondary priority condition: The particle's fitness should 
keep it as close to the robot's goal as possible; in other 
phrases, the fitness function is dependent on the distance 
between the particle and the target. In order to advance the 
robot towards its destination, an attractive action is 
established between the particle and the target as a result of 
this requirement. 
 
𝐹" ∝ /𝑑𝑖𝑠𝑡0!13 for 1 ≤ 𝑖 ≤ 𝑛   (4) 
 

where 𝑑𝑖𝑠𝑡0!1 as used above indicates the distance between 
ith particle and the target position. 

Tertiary priority condition: The fitness value of the particle 
should keep it as close to the robot's mission as feasible; in 
other phrases, the fitness value is proportionate to the 
particle's position from the target. As a result of this desire, 
an enticing action is created between the particle and the 
objective, allowing the robot to go closer to its goal. 
 

𝐹" = 𝑊" ∗ dis	 𝑡,"1 +𝑊) ∗ /1/𝑑𝑖𝑠𝑡,!-./3  (5) 
 

The constants/controlling parameters W1 and W2 are 
specified as the proportionality constants/controlling 
parameters that may be adjusted depending on the particle, 
target, and nearest obstruction locations within the space. 

C. Robot Path Generation 
The robot would follow the shortest path to the target in 

order to meet the PSO criterion. We must consider the 
obstacle position when monitoring the shortest path for each 
robot. To avoid a collision, the robot must maintain the 
greatest possible distance from the object. Once the mobile 
robot has detected obstacles (Sob) within its sensing range, it 
may detect the nearest obstacle based on the strength of 
reflected radiation from the detected obstacles. The distance 
between the robot and the nearest obstacles can be calculated 
using Equation (6). 

 
𝐷23(+)6=B(𝑅7 − 𝑂𝑏7)) + (𝑅8 − 𝑂𝑏8))  (6)

 for 1 ≤ 𝑖 ≤ 𝑆3/ 

Where; i= Iteration number;  
𝐷23(+)6Function for Robot and obstacle distance in the ith 
iteration;  
Rx= Robot current position in x-co-ordinate; 
Ry= Robot current position in y-co-ordinate;  
Obx(i)= Obstacle point in x-co-ordinate;  
Oby(i)= Obstacle point in y-co-ordinate.  
 If the robot follows the shortest path, then distance between 
robot and goal should be minimum This can be determined 
using Equation (7). 
 
𝐷29(+)= B(𝑅7 − 𝐺7)) + (𝑅8 − 𝐺8))  (7) 
 
Where; i= Iteration number; 
𝐷29(+)6 Function for Robot and Goal distance in the ith 
iteration;  
Rx= Robot current position in x-co-ordinate;  
Ry= Robot current position in y-co-ordinate;  
Gx(i)= Goal point x-co-ordinate;  
Gy(i)= Goal point y-co-ordinate. 

The obstacle with the smallest distRob can be chosen as 
the closest obstacle using the determined 'Sob' number of 
distance values. When the robot discovers a nearby obstacle 
around its sensing region, it would spawn a haphazard 
population/swarm in its vicinity. One fitness function F is 
required to determine the fitness of individual particle in the 
swarm for subsequent robot motions. The length between 
each particle and the robot's destination and nearest barrier 
may be calculated if the particle, target, and nearest barrier 
locations are represented as (pxi; pyi), (goalx; goaly), and 
(Nobx;Noby). 
 

dist 0!𝑇 = I/𝑝:! −  goal 𝑥3) + /𝑝8! −  goaly 3) (8) 

dist 0!𝑁𝑂𝑏 = I/𝑝:! −𝑁𝑂𝑏:3
) + /𝑝8! −𝑁𝑂𝑏83

)
 (9) 
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To prevent a collision and reach the objective safely, 
individual particles in the swarm would compute the length 
between the robot and the target and barrier. The particle's 
fitness function would be determined using the Fitness 
function for each particle. 
 
 𝐹+= 𝐷29 +𝐷23     (10) 

Ygbest is a particle that is distant from the closest barrier 
and close to the target location with the lowest fitness value. 
The Ygbest would be determined for multiple cycles until the 
robot is free of sensed impediments or has arrived at its target. 
Velocities of individual particles in the swarm are utilized to 
calculate their best position and the swarm's global agreed 
best position, but they have no effect on the robot's velocity. 
When the robot identifies the swarm's global best position, it 
will begin moving towards the Ygbest. Iterations will 
continue until the robot is no longer in range of the detected 
obstacles or until the maximum number of cycles is reached. 
 

D. Mobile Robot Navigation Algorithm using PSO 
Start 

 
Sequence 1: Set the starting point and target locations for the 

robot. 

Sequence 2: The robot will continue to move at its initial 

speed until it detects any impediments or its intended spot. 

Sequence 3: When the robot detects an impediment, use PSO. 

Sequence 4: Set the random population's locations and 

velocities. 

Sequence 5: Calculate swarm Ygbest along each particle’s 

Ypbest. 

Sequence 6: Using Eqs (1) and (2), get new locations and 

velocities for each particle.   

Sequence 7: Sequence 4, 5, and 6 should be repeated until 

the robot gets clear of the detected impediments. 

Sequence 8: Sequence 2 should be repeated until the robot 

reaches its goal. 

Stop 
 

 

 
Fig. 3. Proposed Particle Swarm Optimization Flowchart. 

 

IV. RESULT AND DISCUSSION 
The results and analysis of this work are divided into 

three sections. The first section shows the analysis of the 
workspace, considering the robots moving to their set 
goals(target) without applying the PSO algorithm scheme 
upon sensing other robots on its path to get it shortest path to 
the target. The second section shows the performance of 
particle swarm optimization techniques in determining the 
shortest distance to avoid any collision or stoppage of a robot 
upon sensing another robot within its path at a particular 
range. The third section shows how the speed and movement 
of the robots are control through the secure data stored in the 
smart contract based on number of target available to pick. 
The time taking for robots to reach target and their respective 
path lengths per experiment results were evaluated and 
discussed. In a virtual environment, robot trajectory planning 
and control are developed. MATLAB 2019 is used to run the 
simulation. The workspace environment is a size of 20 × 20 
units in the x and y axis, the unit is read as centimeters. The 
simulated working environment as shown in Fig. 4, it has a 
starting point and goal point for the robots. 
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Fig. 5. Simulated Environment for the robots. 

 

 
Fig. 6. Simulation showing robots and targets' position. 

 
Fig. 7. Simulation showing robots and targets within workspace. 

 
Fig. 8. Simulation showing navigation without adaptive techniques within 

workspace. 
 

The robots can move in any direction within the simulated 
workspace depending on the target and ensure collision-free 
with another robot within its path range randomly in the 
environment. The results were obtained from MATLAB 2019 
under various computations and iterations. The robot's initial 
positions within the workspace are shown in Fig 6. 

The starting points of the robots and goal (balls to be 
picked up) point for the robot are shown with SP and GP 
respectively. The brown circle represents the target to be 
reached by each robot and their respective points are noted 
within the workspace. Because the robot is initially distanced 
away from the determined target, it uses its intellect and 
sensors to go directly towards the goal. In the simulation run, 
robots are represented by a ball shape with a separate route 
and color code. In terms of power, the robot is self-contained. 
It is omnidirectional; its movement speed may be limited, but 
it is movable. The robots are given a predetermined starting 
position and the desired goal location. The trials were carried 
out under various settings, with identical beginning velocities 
assigned to each robot at the start of the program. 

 
TABLE I: THE INITIAL PARAMETER OF THE SIMULATION WITHIN THE 

20×20 GRID 

Robots Robot Position 
(x,y) 

Target Position 
(x,y) 

Initial Velocity 
(m/s) 

Robot 1 (1,18.5) (17,18) 5 
Robot 2 (1,13.8) (19.8,16) 5 
Robot 3 (1,9) (19.6,6.4) 5 
Robot 4 (1,4) (19.4,11.4) 5 

Table I shows the initial position of the robots along their 
respective velocities, the position of targets (Ball) is also 
inputted. These initial values are specified to set up the 
simulation parameter. 

Once the simulation is run robot first checks for available 
targets based on updated parameters of other neighboring 
robots. In moving from the initial point to the target point as 
stated in the table above the robot would set it target value. 
Following that, a path is established for the robot to navigate 
and follow within the working environment after establishing 
target values and defining other variables. If there is an 
obstacle (another robot in this case) at each of its sensing 
regions, a conditional statement set is used to check if there 
is an obstacle. If there is an obstacle, an action is taken to wait 
for it in the neighborhood of X direction (axis) and Y 
direction (axis). 

The next stage is to determine the distance between each 
point the robot passes through while navigating from the 
initial to the goal point. 

As shown in Fig. 7, the simulation was set up with 4 robots 
and represented as small filled disks (Rob. 1 as blue, Rob.2 
as red, Rob. 3 as light blue, and Rob. 4 as green). The goal is 
to guide each mobile robot (Rob. 1 to Rob. 4) to its respective 
objectives (Targ.1 to Targ.4) without colliding with the other 
robots. While navigating from the initial location to the target 
point, each robot employs the induced reference trajectory. 
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TABLE II: PATH DISTANCE WITH THE TIME TAKEN FOR ROBOTS WITHOUT 
ADAPTIVE TECHNIQUES 

Robots Path Length Covered by 
Robots (m) 

Robots Duration from 
start point to Target 

(mins) 
Robot 1 17.72 5.22 
Robot 2 14.45 4.36 
Robot 3 13.00 4.15 
Robot 4 15.52 4.97 

 
As tabulated in Table II shows the total distance of each 

robot to navigate and reach its desired target on simulation. It 
also shows how long it takes each robot to get to its desired 
target without colliding with any other robots. Robot 3, has 
the best minimum path and time to reach the target despite 
having to wait for Robot 4 during the simulation. The mobile 
robot's speed was kept constant at 5 m/s to traverse from its 
SP to GP using self-navigation based on information gathered 
through its sensors. The sensing method is achieved by the 
mobile robot through virtual sensors attached around the 
omnidirectional mobile robot with sensing range (SR) of 
1.5m. Once the robot senses any obstacle within it sensing 
range, it triggered it mode to calculate the distance between it 
and the obstacle (in this case another robot). This computing 
process help robot to know which one has the minimum 
distance from each other and stop for the other to transverse 
on the path. As shown in Fig. 11, each robot (Rob. 1 as blue, 
Rob.2 as red, Rob. 3 as light blue and Rob. 4 as green) uses 
equation 11 to calculate it distance to obstacles sensed 1.5 m 
along it predefine path then share globally with other robots 
within it sensing range to compare their estimated distances. 
The simulation result as display in Fig. 12, shows Rob1 has a 
maximum distance calculated compared to Rob2. Rob 1 
waited for the other Rob2 to pass through the path before 
traversing to target. This effected it time taken to reach target 
point. Also, Rob3 has a maximum distance calculated 
compared to Rob4. Rob 3 waited for Rob4 to pass through the 
path before traversing to target. This effected it time taken to 
reach target point as shown in table above. This could be 
addresses and solved applying adaptive techniques such as 
particle swarm optimization to create another shortest path to 
avoid collision. 

A. Robot Navigation with Adaptive Techniques (PSO) 
The proposed method would avoid collisions by 

optimizing the trajectory generated by the mobile robot from 
its initial point to its target position inside the work 
environment. We modelled new fitness method to satisfy the 
hindrance avoidance and optimal path movement criteria 
without needing to halt for each other in order to avoid 
collision. The robot goes towards the particle with the best 
fitness value to avoid obstacles and approach the objective 
with the shortest path possible, based on each particle in the 
swarm estimated fitness values. The practicality of the 
presented methodology is validated using simulation results. 

 
TABLE III: CONTROL PARAMETERS USED FOR THE PSO SIMULATION 

Parameters Name Parameter Values 
No of swarm Particles 50 
Particles velocity range 0-3 
Personal Coefficient C1 1 
Global Coefficient   C2 1 

Rand 1and Rand 2 1 
Controlling Parameter W1 0-1 
Controlling Parameter W2 120-800 

The particle population is set to 50 in Table III during the 
simulation. They are initialized at random by establishing 
their locations and velocities in the vicinity of the robot along 
its directional sensing range (say 1.5 meters for calculating 
purposes), with particle velocities ranging from 0 to 3. Each 
particle's velocity is determined by the parameters C1 and C2 
as well as random1 and random2. Normally, the random 
variables random1 and random2 vary between 0 and 1, and 
these values influence velocity of the particles but not travel 
distance of robot. For convenience, these parameters are set 
to a unique value of '1'. Fitness parameters W1 and W2 would 
be changed based on distance traveled by the mobile robot 
inside its work space. It means that while changing the 
parameters W1 and W2, C1 and C2 are meanderingly 
affected to determine Ygbest. The simulation experiment was 
run using C1= 1 and C2= 1 for ease of consideration. rand1 = 
rand2 = C1 = C2= 1 PSO parameters. 

Fig. 9 shows a simulation with four robots interacting with 
different static targets. Little filled disks are used to illustrate 
the robots (Rob. 1 as blue, Rob.2 as red, Rob. 3 as light blue 
and Rob. 4 as green). The goal is to move each mobile robot 
(Rob. 1 to Rob. 4) as close as possible to its respective targets 
(Targ.1 to Targ.4) while avoiding collisions with other robots. 
While navigating from the initial location to the target point, 
each robot employs the generated reference trajectory. When 
it detects an obstruction in its course, it uses PSO techniques 
to discover an optimal path to avoid the barrier and 
successfully reach its destination, as seen below. 
 

 
Fig. 9. Robots and targets initial position during simulation. 

 
Because one of the goals of this research is to create a 

collision-free path with target searching as a secondary goal, 
the barrier avoidance parameter W2 was given greater weight 
than the target focus parameter W1 to achieve the best 
outcome for the report. W1=0.5 and W2=750 were used in 
the simulation, as well as Particle swarm optimization 
parameters C1=1 and C2=1, and rand1&rand 2=1. 
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Fig. 10. Simulation showing generated PSO techniques with particles along 

path 

 
Fig. 11. Robots navigation with PSO techniques within workspace. 

 
Fig. 15 depicts the simulation outcome. Remember from 

methodology Equation of the approach that the PSO particle 
with the lowest fitness value within the swarm is referred to 
as Ygbest. W1 being the first controlling parameter represents 
the particle's proximity to robot's destination target, while the 
other controlling value parameter W2 tells how distance the 
particle is from the nearest obstacle. So, as demonstrated in 
fitness equation, Ygbest can be attained by minimizing the 
fitness function. W1 with a high value implies the particle is  

close to the robot's target, whereas W1 with a low value 
signifies the particle is far away. Similarly, a high W2 value 
indicates that the particle is keeping a greater displacement 
from the nearest barrier, while a low W2 value shows that the 
particle is relatively close to barrier. As a result, the fitness 
function's governing parameters must be adjusted to low W1 
and high W2 values, as specified in this simulation 
experiment. 

TABLE IV: SIMULATION RESULT SHOWING TRAJECTORY LENGTH AND 
TIME TAKEN BY ROBOTS USING PSO 

Robots 
Distance covered 

by robots (in 
meters) 

Time taken for robots to reach 
target from start point (in mins) 

Robot 1 13.12 5.09 
Robot 2 11.04 4.00 
Robot 3 9.11 3.75 
Robot 4 12.12 4.56 

 
The total distance traveled by each robot to navigate and 

reach its desired goal is shown in Table IV. In comparison to 
the result obtained in table 4 without PSO, the path covered 
by each robot was reduced using particle swarm optimization. 
It also illustrates how each robot's time to reach its desired 
destination without colliding with other robots has decreased. 
During the simulation, Robot 3 has the best minimum path 
and time to reach the destination, followed by Robot 2. The 
mobile robot's speed was adjusted to 5 m/s to allow it to travel 
from its SP to GP utilizing self-navigation based on data 
collected by its sensors. Each robot has a 1.5 m sensing range 
(SR). When the robot detects an obstacle within its sensing 
range, it activates its distance calculation mode, which 
calculates the distance between the robot and the obstacle (in 
this case another robot). This computational procedure assists 
robots in determining which robot is closest to the other and 
applying PSO to generate a new optimum path away from the 
other robot in order to reach the destination. As shown in Fig. 
10, each robot (Rob. 1 represents blue, Rob. 2 represents red, 
Rob. 3 represents light blue, and Rob. 4 represents green) uses 
equation 6 to calculate the distance to obstacles sensed 1.5 m 
along its predefined path, which it then shares globally with 
other robots to compare with their estimated obstacle 
distances for minimum distance determination. 

Fig. 11 displays the simulation result, which demonstrates 
Rob1 has determined the maximum distance when compared 
to Rob2. As a result, Rob 1 used particle swarm optimization 
to create an optimum path around Rob2 as it traveled to its 
destination. In comparison to the previous experiment, the 
time taken to reach the goal position was lowered. Similarly, 
when compared to Rob3, Rob4 has a determined maximum 
distance. As a result, Rob 4 also established an optimum path 
to travel around Rob3 as it traversed to its objective utilizing 
particle swarm optimization. 

In comparison to the previous experiment, the time taken 
to reach the goal position was lowered. This illustrates the use 
of adaptive approaches such as particle swarm optimization 
to generate a new shortest path to avoid collisions and 
optimize the robot's course, which has a substantial impact on 
the time taken to reach the target, as seen in Table V. 

Table V compares the robot path and time with and without 
the use of the PSO model approach. When PSO adaptive 
strategies were introduced, the robot's path length and time to 
reach the destination were lowered compared to when they 
were not. The simulation results demonstrate the model 
techniques' capabilities, as well as how successfully the robot 
generates routes using the proposed algorithm, avoids 
obstacles, and arrives at its desired position inside the 
workspace surroundings. In each iteration, the robot's 
trajectories are selected by picking the global best site. The 
particle with the least fitness is considered to be the global 
best point among the swarm. As a result, the robot travels 
toward the global best position, which is repeated multiple 
times until the robot reaches its target position. 
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TABLE V: COMPARISON OF THE PSO TECHNIQUE WITH AND WITHOUT PSO TECHNIQUES ON THE ROBOTS 
PSO 

Parameter 
Criteria 

Robots 
Name 

Path Length 
Without PSO 

(m) 

Robot to 
Target Time 

mins 

Path Length 
With PSO 

(m) 

Robot to 
Target Time 

mins 

No of particle=50 
Particle Velocity=3 
Personal Coefficient 

C1=1 
Global Coefficient 

C2=1 
Rand1&Rand2=1 

Parameter W1=0.5; 
W2=750 

Robot 1 
 
 

Robot 2 
 
 

Robot 3 
 
 

Robot 4 
 

17.72 
 
 

14.45 
 
 

13.00 
 
 

15.52 
 

5.22 
 
 

4.36 
 
 

4.15 
 
 

4.97 
 

13.12 
 
 

11.04 
 
 

9.11 
 
 

12.12 
 
 

5.09 
 
 

4.00 
 
 

3.75 
 
 

4.56 

 

B. Robot Velocity Control 
To combine robotics and blockchain, we followed the 

proposed way in methodology. This was utilized to manage 
the robot velocity in a simpler method between the initial 
point and their respective targets; its integration with the 
simulation demonstrates a revolutionary approach to 
controlling robots that can be tailored to various conditions 
and scenarios. To avoid failures, the smart contract utilized 
for the blockchain might be tweaked to ensure that other 
parameters of the robot, such as temperature and other data, 
do not exceed a threshold. The simulated result was safe since 
no one can change the control logic without the smart-
contract's approval. Furthermore, the blockchain serves as a 
ledger that securely saves data across the swarm's robots. The 
velocities of each robot during the simulation are shown in 
the table below. 

Table VI shows the robot's velocities under various 
settings, with velocities measured in meters per second (robot 
speed) and retrieved at various times (based on when 
conditions are met). The robot is at rest when its velocity is 
equal to zero. The simulation began with all robots moving at 
the same speed, with each robot's speed being regulated by 
the smart contract's defined criteria (each time obstacle like 
other robot is detected, PSO condition is activated to create 
an optimal path to navigate through obstacle and deactivated). 
The values displayed for each robot were within the 
simulation frame; however, when Robot 1 detected another 
robot in its route, its velocity was automatically decreased to 
3m/s. This velocity was maintained until PSO was engaged 
to navigate the obstacle; in order to navigate and develop an 
optimum path, the robot changed its velocity to 2.5 m/s and 
then reverted to normal 5 m/s after navigating the obstacle. 

 
TABLE VI: VELOCITY, IN M/S FOR THE RESPECTIVE ROBOTS 

Velocity 
Condition 
Criteria 

Robot 1 
Velocity 

m/s 

Robot 2 
Velocity 

m/s 

Robot 3 
Velocity 

m/s 

Robot 4 
Velocity 

m/s 
No obstacle 

detected 5 5 5 5 

Obstacle 
detected 3 3 3 3 

PSO 
Activated 

2.5 - - 2.5 

PSO 
Deactivated 5 - - 5 

 
 

The same is true for every other robot. The table 
demonstrated how proposed technology is sufficient of 
managing the modelled robots’ velocities and tracking speeds 
in real-time. The fact that the approach modifies the velocities 
based on the conditions met is one quality that can be noticed 
in the table. The approach constantly insisting on the robot 
moving at a specific speed. 
 

V. CONCLUSION 
This paper demonstrates how path formed by a mobile 

intelligent robot from its initial source location to its 
destination position within its work environment is optimized 
using a particle swarm optimization approach. To acquire 
fitness values for individual particle in the swarm and allow 
each robot to travel along the particle with the best fitness 
value, a novel fitness function modelled to meets the 
hindrance avoidance and optimal path movement 
requirements was utilized. During iteration, the robot's paths 
are selected by picking the global best site. The particle with 
the lowest fitness is considered the swarm's global best 
location. The robot moves closer to the global best position, 
which is repeated until the robot achieves its goal position. 
Simulation results were used to verify the feasibility of the 
suggested technique. Finally, utilizing RobotChain as a 
decentralized ledger, simulated results indicated an 
innovative way for connecting blockchain with robots. 
Robotic events may be registered in the simulated 
architecture, and smart contracts might be used to control 
robots. This approach restrict modification to earlier states 
deposited into the blockchain. Ensures smart-contract output 
is always free of human modifications, suggesting that no one 
can change the logic of a smart contract after it has been 
published on the blockchain. The simulation findings 
demonstrate that to link blockchain technology with robotics 
system is possible. The combination has benefits beyond 
merely providing possible ways to safe and transfer data; in 
the context of this study, the data might also be used to control 
robot characteristics such as velocity. 
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