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Abstract — Using computing algorithms to generate 

personalized learning resources to provide the needs and 
improve the capabilities, preferences, and academic 
performance of diverse learners is creating preferred learning 
environments. As more learning resources, strategies and 
techniques are frequently added to these e-learning systems, 
input data to personalize the learning path has been growing 
exponentially making swift responses to learner’s requests 
difficult. This study proposed a complementary learning path 
personalization architecture using ant colony (ACO) with 
nearest neighbour technique and genetic algorithm (GA) to 
extend the functions of the Spark framework purposely to 
develop a robust evolutionary computing algorithm. 
Experimental results indicate that complementing ACO, GA 
and Spark frameworks improved the generation of personalized 
learning resources and best-fitted-optimized learning paths. 
Spark-ACO took less computational time than standalone ACO. 
Combining ACO and GA improved the likelihood of an ant 
colony being trapped at a local optimum, and Spark-ACO-GA 
significantly enhanced the accuracy of the solutions. 
 

Keywords — Ant Colony, E-Learning System, Learning Path 
Personalization, Genetic Algorithm, Spark. 
 

I. INTRODUCTION 
The ability to automate E-learning systems has created 

preferred learning environments for diverse learners [1]. 
However, designing appropriate course content to propel 
knowledge transfer through e-learning systems mostly lack 
personal support and guidance from facilitators [2] and 
learners’ preferences [3]. Adopting a learning path clustering 
strategy in e-learning systems can facilitate the generation of 
personalized learning objects to provide the needs and 
improve the capabilities, preferences, and academic 
performance of learners. A study by Nabizadeh et al. in 2020 
that spanned from 2009 to 2020 showed course generation as 
the most used learning path personalization method rather 
than course sequence [4]. It was therefore laudable for this 
study to focus on course generation mechanisms. Generally, 
a computational intelligence technique of evolutionary 
computing is suitable to provide the desired solution to the 
challenges of personalized learning paths as evolutionary 
computing seeks to optimize the objective function of 
scientific problems [5].  

Kardan et al. presented a path generation method using an 
ant colony optimization algorithm and MapReduce 
framework [6]. Focusing on the course generation category, 
Li et al. presented a path generation method using a genetic 
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algorithm and particle swarm optimization [7]. Vanitha et al. 
used an ant colony and genetic algorithm to construct a 
learning path in E-learning [8]. However, as more learning 
objects, diverse learners with preferred changing learning 
needs, strategies and techniques are added to these e-learning 
systems frequently, input data to personalize learning paths 
has been growing exponentially [4]. Regardless of such 
growth of data, learning path personalization algorithms 
ought to manage extensive datasets and respond swiftly to the 
requests of learners. This has necessitated employing a more 
robust algorithm or complement algorithms to efficiently 
generate a personalized learning path that fits the 
requirements of a learner. 

Sachdeva et al. developed an Android application to 
personalize e-learning using peer recommendations and ant 
colony. The application enables learners to complete a course 
within a short time [9]. However, their work was inefficient 
and not accurate in determining the learning path of 
individual learners. Zhang et al. proposed a mechanism to 
simplify e-learning paths using differential evolution 
computing algorithms [10]. However, their work did not 
consider the learning performance of the learner during the 
learning process.  

E-learning systems are creating preferred learning 
environments for several learners, learners prefer e-learning 
systems that can generate personalized learning objects, and 
computing algorithms are used to generate and optimize 
personalized learning paths. These require resolving related 
problems with sequencing learning objects, enhancing the 
local search, reducing computational activities and 
generating the best path.  The Apache Spark-based 
framework has been designed to provide scalability and 
adaptability for handling big data and can be used in an e-
learning environment to capture big data streaming [11]. This 
study then proposes a complementary learning path 
personalization architecture that incorporates ant colony and 
genetic algorithms to extend the functions of the Spark 
framework (Spark-ACO-GA). Section II of this paper 
discusses the problem formulation and the learning path 
construction mechanisms of the study. Section III looks at the 
Spark-ACO-GA learning path personalization architecture 
and its implementation. Section IV looks at the results. The 
conclusion of the paper is captured in Section V. 
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II. PROBLEM FORMULATION AND STUDY PARAMETERS 
The learning path personalization problem results from 

clustering and classifying several learning resources and 
learner profiles (personal profile, learner preference, and 
learner portfolio) to address specific learner needs. The 
personal profile and learner preference were obtained after 
each learner provided such details through an online form. 
Learner portfolio and performance were obtained from 
activity logs after each learner had attempted the learning 
resources and assessment. Progressing to study the next level 
of learning resources depended mostly on the assessment 
results or performance of the learner. The goal was to 
generate the best-fitting learning paths to help learners make 
the best use of learning resources to improve performance. 

Several studies have been conducted into finding accurate 
characteristics or profiles of learners that use e-learning 
systems to identify and cluster learning paths and ultimately 
improve learning activities. However, the standard 
characteristics [8], [12] considered in this study are personal 
profile, learner preference, and learner portfolio. Given that 
each learner is represented as Le; Le = {Le1, Le2, Le3 … Le 
n} and assigned with specific attributes. The learner profile is 
made up of 4 tuples. Le = {PP, LP, LPo, Pe}, where PP 
represents Personal Profile, LP represents Learner 
Preference, LPo represents Learner Portfolio and Pe 
represents Performance. Representations are given below.  

• Personal Profile (PP) = {PP1, PP2, PP3, …, PPN}. 
Basic learner information such as id, name, age, email, 
username, and educational level were used. 

• Learner Preference (LP) = {LP1, LP2, LP3 …. LPN}. 
The values of LP include learning styles {Visual, 
Auditory, Read/write, Kinesthetic, and Multimodal}.  

• Learner Portfolio (LPo) = {LPo1, LPo2, LPo3…. 
LPoN}. Here, learner goal (objective and purpose of 
completing a knowledge point, a unit, a course, or a 
subject), and competency (acquired skills, experience 
and knowledge level) were considered. 

• Performance (Pe) = {Pe1, Pe2, Pe3….PN}. Academic 
performance attributes included content studied, date 
and time, state of completion, accumulated usage time, 
score (range: 0 - 100), and grade were used. 

To affirm a specific learning goal of a learner, learning 
resources that constitute learning objects (assembled into 
related learning content) should be developed. Learning 
objects facilitate learner requirements customization that 
makes personalization of learning content feasible [13]. The 
authors reflected on learning resources as learning contents 
that are reusable and denoted LR to their attributes such that 
LR = {LR1, LR2, LR3 …LR N} where LR = {DCi, TCi, Ri} 
are outlined below: 

• Difficulty of learning content (DC) = {DC1, DC2, 
DC3…. DC N} represents the values {1=Easy, 
2=Moderate, 3=Difficult, 4=Most difficult} at various 
levels.  

• Time to complete (TC) = {TCi} where TCi is the time 
required to finish the LR.  

• Requirement (R) = {R1, R2, R3 …. RN}. It shows 
knowledge of prior learning content required to 
progress to the current LR. 
 

Thus, the fundamental elements to represent the problem 
include node(s) and edge(s); distance between edges of 
nodes; weight(s) on edge(s) and ant, the search robot. Similar 
to a graph, the generation of a personalized learning path is 
represented as LP = (X, Y). X represents the nodes which 
consist of a set of LR while Y represents the edge, a link that 
connects the LRs. A value Vjk that represents learners’ scores 
is assigned to the edges of node j and node k. The usage data 
were serialized and mapped to the learning styles while 
results were tagged to personal profiles. 

 

III. SPARK-ACO-GA LEARNING PATH PERSONALIZATION 
ARCHITECTURE AND IMPLEMENTATION 

A. Spark-ACO-GA Architecture 
The main components of the Spark-ACO-GA architecture 

are illustrated in Fig. 1. 
 

 
Fig. 1. Spark-ACO-GA Learning Path Personalization Architecture of 

E-Learning System. 
 

The Apache web server houses the E-learning platform. 
The Apache web server was used since it is fast, scalable, 
handles simultaneous requests from browsers and runs under 
multitasking. The E-learning platform was Moodle. The 
proposed system runs in standalone cluster mode. With this, 
Spark runs on a single machine, precisely, the database server 
and uses a local file system instead of Hadoop’s distributed 
file system. As a 3-tier system, multiuser and concurrent 
access from the web server is feasible; and data quality, 
system maintenance, improved security, backup and recovery 
are guaranteed. Data on e-learning can grow larger due to an 
increase in the number of users. It is then appropriate to place 
web and database applications on separate servers for 
eventual scalability and achieving operational efficiency. 

Structured data including learning resources, learner 
profiles and other usage/log data on the e-learning system are 
extracted from the web server and converted to comma-
separated values (CSV) files to facilitate the processes 
involved in Spark. The output is stored in MySQL (a database 
management system). Assigning a learning object with 
identification (ID) and linking it with metadata of the learning 
object can reduce the time required to obtain learning 
information. Moreover, the difficulty of learning content, the 
time taken to complete the learning object, and the 
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requirement (knowledge of prior learning content) must be 
captured and stored in the database server. The learner profile 
is automatically updated anytime a learner communicates 
with the e-learning system. The structured data is 
subsequently loaded to the learning path personalization and 
optimization component for processing.  

Complementing Apache Spark with MySQL is appropriate 
because Spark increases query performance due to in-
memory computing (cache data into an in-memory table) [14] 
and utilizes all the processing units in data processing which 
is a major limitation of MySQL. Spark SQL as one of Apache 
Spark’s libraries uses distributed and parallel processing 
approaches to process and analyse a high volume of batch and 
real-time data. Spark SQL is highly scalable to large jobs, 
fault-tolerant and uses a cost-based optimizer for faster 
execution of queries. Spark SQL works with structured and 
semi-structured data and uses Java Database Connectivity 
(JDBC) interfaces to connect to relational databases. Spark 
SQL interacts with MySQL server through JDBC to execute 
SQL queries and update the database with data from the path 
clustering system.  

To improve efficiency, Zabbix, a system monitoring 
software is used to monitor and control elements of system 
performance, hosts and applications activities. Zabbix is 
compatible with MySQL and Spark. The high capacity and 
performance, ability to auto-discover added servers, network 
nodes and interfaces with centralized web administration 
make Zabbix more appropriate for the learning path 
personalization architecture than other system monitoring 
software [15].  

The Spark SQL libraries load the data into the in-memory 
table for processing using the distributed and parallel 
processing approaches of the Apache Spark framework. 
Apache Spark is responsible for scheduling computational 
tasks, distribution and manipulation of data in parallel using 
resilient distributed datasets (RDDs). An RDD as a fault-
tolerant is cached in memory to support multiple parallel 
operations and recovery of lost partitions.  

Using the scalable machine learning library, MLlib in 
Spark, data is clustered using the K-Means algorithm. 
Genetic Algorithm (GA) is integrated with Ant Colony 
(ACO) to resolve related problems with sequencing learning 
objects, local search, computational activities and obtaining 
the best path. The Learning Path Personalization Module 
receives best-fitted-optimized learning paths and forwards 
them to the Personalized Learning Paths component. Then, 
the generated personalized learning paths are delivered to the 
learners to improve their capabilities, preferences, and 
academic performance. 

B. Building Ant Colony on Spark (Spark-ACO) 
Ant colony should perform several iterations before 

attaining the best results in a traversal. The main element of 
the pheromone matrix is updated by the best route outcomes 
after the completion of every iteration process. Each updated 
pheromone matrix is broadcast to all nodes in the cluster for 
use in the subsequent iteration. As a result, the Spark-ACO 
algorithm takes advantage of the Spark platform's sharing 
functionality. Through broadcasting, each node in a cluster 
receives the distance matrix between nodes for achieving 
practicable solutions. 

In the ant colony algorithm, ants construct their workable 
solution independently for each iteration. Since each RDD in 
the cluster represents an ant, the ant colony is packaged by 
the Spark-ACO algorithm as analogous to RDD sets in 
individual nodes. Following that several operations are 
planned by Spark's capabilities to carry out RDD's 
transformation and operation. According to the number of 
cluster nodes, the Spark application is split into many 
partitions, and the RDD operation mode is fully parallel in 
each partition. 

C. Combing Spark-ACO with Genetic Algorithm  
The ACO acts as a constructive process to cluster learning 

objects, personal profiles, learner preferences, and learner 
portfolios into a learning path while GA optimizes the process 
of selecting the best-fitted path among the paths that ACO 
generates. Spark schedules computational tasks and 
manipulates data in parallel using RDD. Integrating Spark 
with ACO is necessary since the K-Means algorithm takes 
extra time in the initial selection stage. The sharing 
mechanism of the Spark platform is utilized by the Spark-
ACO algorithm. Since the ant independently builds its 
feasible solution in each iterative process, the Spark-ACO 
algorithm considers the ant colony as RDD sets where each 
RDD represents an ant in each node in the cluster. Per the 
number of nodes in a cluster, partitions are created to 
represent the Spark program. The operations and 
transformational activities of RDD are carried on by a series 
of Spark functions in a complete parallel mode to construct 
optimal solutions. Each node also functions per the stages 
described below when GA is incorporated into a cluster: 

• Stage 1: The outcomes of the sequence of city 
travelling are used as the genetic algorithm's 
preliminary population once the ant colony has 
traversed each node. The starting population of 
individuals is equal to the total number of ants where 
every single individual represents the sequences of 
each ant’s city touring. Every city sequence matches a 
specific cost value while the cost value equals the 
genetic algorithm's fitness. 

• Stage 2: The selection, crossover, and mutation 
operations are executed by a genetic algorithm. 

• Stage 3: Where the least cost of the ant colony’s tour 
is below the least value of the individual’s fitness of 
genetic algorithm, and the least value among the two is 
below the lowest value of the previous iteration, revise 
chromosomal arrangements of the least individual GA 
with the optimized path of the ant colony. Alternately, 
the optimization path of the ant colony should be 
updated using the least distinct chromosomal 
sequences of GA. 

• Stage 4: Where the iteration count is a prime digit, the 
key process compiles the best outcomes from more 
processes, computes process figures using the least 
value, and broadcasts the least value and route. 

• Stage 5: The key method generates the cities' best 
sequence for this iteration and modifies the global 
pheromone matrix and certain aspects of chromosomal 
sequences of GA using certain routes of ant colony. 

• Stage 6: The procedure is repeated until the algorithm 
reaches the desired result. 
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D. Spark-ACO-AG Implementation Mechanism 
The optimization algorithm of the ant colony creates ant-

like agents (alumni) to construct a solution while the genetic 
algorithm produces the best chromosomes to enhance the 
generation of a quality population. ACO and GA are 
initialized. At this point, predetermination is made for the trail 
value of the pheromone, heuristic facts, evaporation factor of 
the pheromone, and total ants of the ant colony. The number 
of times iteration is performed, the population size of the ants, 
and the probability of crossover and mutation are also 
initialized. The expected best solution (X%) from ACO, as 
well as the best and worst population (K% and L%) of GA, 
are initialized respectively. We denote chromosomes as the 
representation of a probable solution to the challenge of 
clustering analogous learners (alumni). Represented in binary 
format, a single chromosome comprises five genes [Visual, 
Auditory, Read/write, Kinesthetic, Multimodal …. Visual, 
Auditory, Read/write, Kinesthetic, Multimodal] that are 
considered learner characteristics.  

Each ant traverses all cities; records the list of cities it has 
traversed, the path length between cities and the total length 
covered and comes back to the city it started with the 
traversal. As a result, the study employs a nearest neighbour 
(NN) technique in which ants randomly choose the next city 
from a group of w nearby cities. An ant has to choose one 
from the remaining cities that haven't been passed if all w 
cities have been traversed. As per the probability pyij(t) of 
state transfer, an ant will select the nearest city as it traverses 
[16]. 

pyij(t) shows ant y at t time and the probability between 
cities i and j as (1) indicates: 
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Group of cities in (1) is allowedy where ant y allows entry 

at now; τij(t) denotes residue of pheromone between cities i 
and j at time t; ηij(t) denotes anticipated level of city i moving 
to city j at time t, the value of ηij(t) = 1/dij, dij is distance 
between cities i and j; α denotes heuristic information factor; 
β denotes anticipated heuristic factor [16]. 

The ant colony is created, parameter variables are 
broadcasted, the best solution is updated, and the pheromone 
matrix is updated and broadcasted to each RDD that 
represents an ant in a node. Trial and error with iteration set 
at 300 were used to identify the ideal ant population that was 
set at 1, 25, 100, 200, and 500. Finding an optimal solution 
using a few ants is not possible. Likewise, increasing the ants’ 
number consequently increases running time. Hence, setting 
the number of ants/alumni (n) at 300 was appropriate to find 
the optimal solution. 

The selection of appropriate LR at the subsequent level 
after a learner finishes a specific LR is determined by the 
parameters of pheromone value, heuristic information, and 
node visitation information (information stored in the 
memory of ant to avoid looping). Learner score and total time 
to study LR are inputs to update pheromone value. Total time 
to study LR factoring ability to remember learned concept are 
used to determine the heuristic information. The fitness of LR 
is determined by the strength of the pheromone. The updated 

pheromone trails are a key input to the selection of fit ants to 
reproduce the new population in GA. With the introduction 
of the evaporation factor and applying updating (2), the 
volume of pheromone information at each edge is adjusted. 

 
𝜏(89):				80/	 = (1 − 	𝜌) × 	𝜏(89):				.-1	 +	𝛥𝜏(89):	 𝜌	Î	(0, 1) (2) 

 
where 𝜏(89):				80/	represents pheromone information on the edge 
(n, m) after an update in the k node; 𝜏(89):				.-1	represents 
pheromone information on the edge (n, m) before the update 
in the k node; ρ represents the pheromone evaporation 
information factor; and 𝛥𝜏(89):	  represents updated 
pheromone information on the edge (n, m) in the k node. 

Assessments that a learner takes after studying a concept 
and/or completing a course (i.e., reaching the end of a node) 
is/are used as input to compute a value(s) of pheromone at the 
edges. 

GA performs the optimization process by initializing, 
selecting, crossover, and mutating. In a search space called 
population, GA starts with specific solutions. Utilizing a user-
defined mathematical fitness function (3) as presented below, 
the fitness of each ant in a population is evaluated and stored 
as RDD sets in the cluster. In GA, the fitness function 
(performance index) is used to assess the quality of learning 
paths that had been generated. 
 
𝑓 = 2 (𝑦	´	𝑡(!;<)! 	

8
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where f represents the fitness function of GA, t(i-1)i  denotes 
the degree of the relation of the (i - 1) learning resources with 
i learning resource in the created learning path, di is the 
parameter to determine the difficulty of learning resources 
obtained from the metadata, y is a degree of learning (f 
(TimeSpent/StipulatedTime)), and n represents the entire 
number of learning resources selected for generating 
personalized learning path. 

When all the nodes are visited, the percentage (X%) of the 
best solutions (best ants) of ACO is input into the mating pool 
of fit ants of GA to reproduce a new population of ants. 
Reproduction of a new population of ants occurs when the 
best fitness or maximum generation is not reached. At this 
stage, fit ants are selected to perform cross-over and mutation 
to generate new off-springs which are subsequently 
evaluated. Randomly, the roulette wheel is used to 
stochastically select individuals with the highest fitness to 
form the next generation. The probability of crossover 
generations was set at 0.8 to reduce the chance of an offspring 
having most of the characteristics of the parent. Generally, 
the value of the probability of crossover ranges between 0.5 
and 1.0. The probability of mutation was set at 0.005 to 
induce diversity in the population and overcome the chance 
of an offspring inheriting similar qualities from the parents. 
Generally, the value of the probability of mutation ranges 
between 0.005 and 0.05. This stage injects new LR into the 
learning route. 

Once the best fitness is reached or maximum generation is 
obtained, the best population (K%) updates the global 
pheromone value of ACO and the worst population (L%) 
applies to pheromone evaporation as given in (4), (5) and (6). 
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𝜏89 	← 	 (1	 − 	𝑝)	𝜏89    (4) 
 

For updating the global pheromone, the whole effect of 
pheromone updates of the entire ants in each path (n, m) is 
shown in (5), (6). 
 
𝜏89(𝑡 + 1) = 𝜌𝜏89(𝑡) +	𝛥𝜏89:	 (𝑡)   (5) 

 
𝜏89(𝑡) = 2 𝛥𝜏89:	 (𝑡)

/
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where 𝜏89(𝑡) and 𝜏89(𝑡 + 1) are the value of pheromone on 
the edge (nm) at time t and (t + 1) respectively. The increment 
in pheromone value is represented by 𝛥𝜏89:	 (𝑡). 

The following pseudocode illustrates the entire mechanism 
of the Spark-ACO-GA: 
0.0 Begin 

1.0 Initialize Spark-ACO parameters 
2.0 Create ant colony 
3.0 Broadcast ant colony parameter variables 
4.0 For each node 

4.1 For each cluster 
4.1.1 Get ant colony from 

RDD transformation 
and operations. 

4.1.2 Construct solutions 
4.1.3 Record performance 
4.1.4 Update local 

performance 
4.2 End each cluster 

5.0 End each node 
6.0 Update best solutions or generate optimal 

path length 
7.0 Update and broadcast pheromone matrix 
8.0 If all ant colony is created then 

8.1 Go to step 14.1 with X% best ants 
9.0 Else 

9.1 Go to step 2.0 
10.0 End if 
11.0 Generate Spark-ACO-GA initial population 
12.0 Evaluate the fitness of each ant within each 

cluster 
13.0 If reached the best fitness or maximum 

generation then 
13.1 Return best ants 
13.2 Update global pheromone (K% 

best population) 
13.3 Pheromone evaporation (L% worst 

population) 
13.4 If all ant colony created then 

13.4.1 Best path obtained  
13.4.2 Go to 16.0 

13.5 Else 
13.5.1 Go to step 2.0 

13.6 End if 
14.0 Else 

14.1 Reproduce new population 
14.2 Select the fit ants 
14.3 Do crossover 
14.4 Perform mutation 
14.5 Create new population 
14.6 Go to 12.0 

15.0 End if  
16.0  Stop 

The genetic algorithm is combined with the ant colony-
based Spark algorithm to construct a solution, update the 
pheromone, generate population, evaluate fitness, perform 
genetic operations, and generate the best path. Repeatedly, 
the whole collaborative process of Spark-ACO-GA runs till 
the stipulated number of iterations are reached to create all 
ant colony. At this point, the best path is created. 

 

IV. RESULTS AND ANALYSIS OF THE EXPERIMENT 
Designing, setting and determining specific parameters 

that facilitate the experimentation are performed. The intent 
is to test a complementary learning path clustering 
architecture that incorporates an ant colony algorithm with 
the nearest neighbour technique, genetic algorithm and 
Apache Spark framework. In addition, the effects of node(s) 
in the spark cluster on execution time, total execution time 
and correctness of ACO, Spark-ACO with and without 
nearest neighbour technique and Spark-ACO + GA are 
determined. 

A. Setting and Determining Parameters of the 
Experiments 
As part of setting up the environment to perform the 

experiments, values of pheromone trail (α), the number of 
ants/alumni (n), heuristic information (β), probability of 
mutation (Pm), pheromone evaporation coefficient (ρ), 
probability of crossover generations (Pc), and population size 
were all determined through experiments. The parameters of 
ρ and β were constantly held at 0.3 and 1 to 4 respectively to 
ascertain the value of α. β was set with total iterations of 300. 
Choosing 0.3 for ρ was appropriate to balance between 
optimal values of 0.2 and 0.6 as a low value converges 
quickly [8]. Initially, the parameter of α was varied between 
0.1, 0.3, 0.6, 0.75, and 1.0. The value of 0.1 causes it to 
converge rapidly. When the deterioration constant is set to 
1.0, convergence to a solution was slow. Fewer evaporation 
results in slower pheromone intensity degradation once a 
lower value of constant was set. Naturally, a high number for 
this element suggests that the effect of the preceding course 
taken will swiftly fade. The outcome will be significantly 
impacted by the new route. Finally, the value of α was set 
between 0.5 and 2 (0.5, 1.0, 1.5, 2.0), and total iterations of 
300.  

The probability of crossover (Pc) generations was set at 0.8 
to reduce the chance of an offspring having most of the 
characteristics of the parent. The probability of mutation (Pm) 
was set at 0.005 to induce diversity in the population and 
overcome the chance of an offspring inheriting similar 
qualities from the parents. The total ants/alumni (n) set at 300 
was appropriate to find an optimal solution. The nodes in a 
cluster of the Spark executor were configured as [1, 5, 10, 15, 
20, 25, 30, 35, 40, 45, 50]. 

For this research, four elements including software 
development techniques, CASE tools, scope management, 
and project schedule were selected from an undergraduate 
course in software engineering. There were several subjects 
for each concept, and two themes were selected for each 
concept. Each subject included learning items with varying 
degrees of complexity and presenting style. 
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To make each subject more individualized for the learners, 
various combinations of LRs were used to convey it. 
Delivering the appropriate LR to the appropriate student 
based on those learners’ adaption characteristics was 
essential. All students were assessed regardless of the LRs 
studied to comprehend the concepts. Assessments were the 
same for all students. The proposed architecture recommends 
a learning route based on the prior experiences of a learner 
(alumnus). Data needed for the experiments were gathered 
from 214 second-year computer science students studying 
software engineering course. The whole course was 
scheduled to complete in 12 weeks. Formative assessments 
were conducted after each theme. The students completed 20 
summative assessment questions after the course to assess 
their understanding of all the concepts. Additional data 
obtained from alumni were also documented to aid the 
learning path personalization.  

The hardware set up for the experiment included an IBM 
x3850 X6 Server – 4 processors, each with 20 cores, CPU 
clocked at 3.0 GHz, and 384 GB capacity of memory. For 
software, the RHEL7.6 Server operating system, spark-3.0.0-
bin-hadoop3.2, and JDK 8 were used to set up the 
experiment's environment. 

B. Effects of Spark Cluster Nodes, Pheromone Trail and 
Heuristic Information on Execution Time 
A specific time cost is required for communication and 

cooperation across cluster nodes while the ant colony 
algorithm is running on a cloud computing platform. 
Therefore, given a certain ant colony size, adding a sufficient 
number of nodes to a cluster may speed up the execution of 
the algorithm. However, the algorithm's execution time rises 
as the total cluster nodes exceed a certain crucial amount. 
Considering these issues, experiments were designed to 
examine how the clustering of nodes impacts the ant colony 
algorithm's running time. In addition, it was appropriate to 
determine how long an algorithm will converge for various 
pheromone evaporation factors, how ants converge and 
avoiding the limitless accumulation of trails affect the 
execution time and solution. 

The following ant colony algorithm settings are used in the 
experiment to determine the appropriate number of nodes per 
cluster: the total number of iterations Nc=100, values of 
pheromone trail α = 1.5, total ants n = 300, the pheromone 
evaporation coefficient = 0.5, the predicted heuristic factor = 
2.0, and the heuristic information factor = 1.0. The nodes in a 
cluster of the Spark executor are configured as [1, 5, 10, 15, 
20, 25, 30, 35, 40, 45, 50]. We execute the Spark-ACO 
algorithm 20 times for each executor value before calculating 
the average time. The findings of the experiment are shown 
in Fig. 2 with milliseconds serving as the time unit (ms). 

From Fig. 2, setting the cluster node executor to 1 or having 
a single node in the Spark cluster, the algorithm took the 
longest amount of time to run. The algorithm took less total 
time to run when the cluster node executor number is between 
10 and 30 which confirms the work of Aharia et al. [17]. The 
Spark cluster node is then set to 20 considering an ant colony 
size of n = 300, which saves the maximum time. 

 

 
Fig. 2. Relatedness of Total Cluster Nodes and Execution Time. 

 
Using the initial values set earlier, Figs 3a and 3b were 

generated. 
 

 
(a) 

 
(b) 

Fig. 3. a) Pheromone trail (α); b) Heuristic information (β). 
 
The alpha (α) value was calculated by measuring the 

standard of an ideal solution. The values of α were initially 
set between 0.5 and 2, and up to 300 iterations were carried 
out. Fig. 3a plots the best solution against time (in seconds) 
for various values of (0.5, 1.0, 1.5, 2.0). The alpha value was 
calculated by measuring the standard of an ideal solution. 
After plotting to determine the optimal solution against time, 
the appropriate scope of values of α was 1 and 2.   

The experiment was repeated to identify the parameter of 
β in Fig. 3b. Before plotting to determine the optimal solution 
against time for β, β varied from 1 to 4 with a constant value 
of 1, and up to 300 iterations were carried out. After the 
plotting, the appropriate scope of values of β became 2 and 3. 
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C. Determining the Total Execution Time of ACO and 
Spartk-ACO 
The study performs experiments to contrast the execution 

times of ACO and Spark-ACO algorithms to demonstrate 
their time effectiveness of them. Execution of the Spark-ACO 
algorithm was performed on the Spark platform server and 
the ACO algorithm in Java ran on a stand-alone server. These 
two platforms had the same configurations. The ant colony 
algorithm's settings are as follows: total iterations Nc=100, 
values of pheromone intensity = 1.5, total ants n = 300, the 
pheromone evaporation coefficient = 0.5, the predicted 
heuristic factor = 2.0, and the heuristic information factor = 
1.0. From earlier findings, the nodes in a cluster of the Spark 
executor were set to 20. Additionally, the ant colony's size, 
given by the n value was in the range [100, 300, 500, 700, 
900, 1100, 1300, 1500]. For each number of ant colonies, run 
each of the two algorithms separately 20 times before 
calculating the average run time. 

As shown in Fig. 4, ACO only runs faster than Spark-ACO 
when the size of the ant colony was 100 or less. Thus, in 
stand-alone mode, the standard ACO algorithm may execute 
faster comparable to the Spark-ACO algorithm when the total 
number of ant colony is small. The premise is that interactions 
among nodes in a clustering result in a significant amount of 
the total time of operation once the ant colony algorithm is 
employed. A cluster of parallel computing will progressively 
start to outperform stand-alone mode as colony size increases. 
The Spark-ACO method uses the Spark framework to 
compute its calculations and packages the ant colony in a 
customizable distributed data RDD set. Each node in the 
cluster has the same amount of the ant colony RDD, which 
effectively utilizes the spark platform's computational 
memory features. Ant colonies build the best solutions via a 
succession of RDD conversion operations in each iteration 
step. Spark thus demonstrates its benefits in memory-based 
computing and avoiding data from landing. The Spark-ACO 
algorithm executes faster than ACO as the colony size 
increases. 
 

 
Fig. 4. Time Cost of ACO and Spark-ACO. 

 

D. Determining the Precision of the Hybridized 
Complementary Algorithms 
This research focused on using the nearest neighbour (NN) 

technique and a hybrid genetic algorithm as the main 
elements of the proposed complementary architecture to 
enhance the outcome of the simple ant colony algorithm. 

The following experiment is set up to test and compare the 
outcomes of hybridized complementary algorithms in terms 
of generating quality solutions. 

The ant colony algorithm's settings are as follows: total 
iterations Nc=300, values of pheromone intensity = 1.5, total 
ants n = 300, the pheromone evaporation coefficient = 0.5, 
the predicted heuristic factor = 2.0, and the heuristic 
information factor = 1.0. From earlier findings, the Spark 
cluster node executor was set to 20. In addition, the study 
chooses cases of kroA100, rat783, berlin52, d198, rd400, 
kroB150, and ch130 for investigations. The variants of the 
algorithms (Spark-ACO, Spark-ACO with NN, and Spark-
ACO with NN and GA) were executed 20 times for each TSP 
instance, and each best outcome and the TSPLIB each 
algorithm produced are contrasted. The outcomes of the 
experiment are shown in Fig. 5. 

 

 
Fig. 5. Accuracy of hybridized complementary algorithms. 

 
From Fig. 5, the operating time of the Spark-ACO 

algorithm greatly shortens and attains improved running 
speed than ACO. The Spark-ACO with NN algorithm attains 
improved running speed than Spark-ACO while Spark-ACO 
with NN and GA significantly enhanced the quality of 
solutions and execution time than all the other algorithms. 
This result confirms the observation made by Gaifeng et al. 
[16]. 

 

V. CONCLUSION 
The proposed architecture focused on integrating the ant 

colony algorithm and genetic algorithm with Spark; a parallel 
computing framework to run in standalone cluster mode. 
Spark can run on a single machine and allows user-defined 
functions to add custom optimizations. Spark increases query 
performance since it is an in-memory distributed computing 
engine. Spark distributes and manipulates data using RDDs. 
RDDs are fault tolerant that are cached in memory to support 
multiple parallel operations and recovery of lost partitions. 
This distribution mechanism of Spark improves the execution 
of the K-Means algorithm, and computational time, and 
solves the issue of limited resources. Though the ant colony 
algorithm facilitates the clustering of data, it takes a longer 
time to solve large-scale problems and it is likely to be 
trapped at a local optimum. The ant colony generates ant-like 
agents to construct solutions while GA produces quality 
chromosomes to enhance the generation of a quality 
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population of ants. The fundamental ant colony technique is 
devised and executed in Spark since an individual machine is 
not able to handle the computation time of huge dataset 
issues. Combining ACO and GA eliminated the likelihood of 
an ant colony being trapped at a local optimum. The 
execution time of the Spark-ACO significantly decreased 
compared to the standalone ACO system. The NN approach 
and GA were purposely integrated into Spark-ACO, which 
significantly increased the accuracy of the results. Thus, the 
ant colony algorithm, genetic algorithm and Spark framework 
are complementary to generate and optimize personalized 
learning paths. Our research leads us to the conclusion that 
the proposed complementary architecture could help improve 
the generation of personalized learning objects and best-
fitted-optimized learning paths to enhance the performance of 
learners and boost technology-driven learning as preferred 
learning environments. 
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