
 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 41

Abstract — Using computing algorithms to generate

personalized learning resources to provide the needs and
improve the capabilities, preferences, and academic
performance of diverse learners is creating preferred learning
environments. As more learning resources, strategies and
techniques are frequently added to these e-learning systems,
input data to personalize the learning path has been growing
exponentially making swift responses to learner’s requests
difficult. This study proposed a complementary learning path
personalization architecture using ant colony (ACO) with
nearest neighbour technique and genetic algorithm (GA) to
extend the functions of the Spark framework purposely to
develop a robust evolutionary computing algorithm.
Experimental results indicate that complementing ACO, GA
and Spark frameworks improved the generation of personalized
learning resources and best-fitted-optimized learning paths.
Spark-ACO took less computational time than standalone ACO.
Combining ACO and GA improved the likelihood of an ant
colony being trapped at a local optimum, and Spark-ACO-GA
significantly enhanced the accuracy of the solutions.

Keywords — Ant Colony, E-Learning System, Learning Path
Personalization, Genetic Algorithm, Spark.

I. INTRODUCTION
The ability to automate E-learning systems has created

preferred learning environments for diverse learners [1].
However, designing appropriate course content to propel
knowledge transfer through e-learning systems mostly lack
personal support and guidance from facilitators [2] and
learners’ preferences [3]. Adopting a learning path clustering
strategy in e-learning systems can facilitate the generation of
personalized learning objects to provide the needs and
improve the capabilities, preferences, and academic
performance of learners. A study by Nabizadeh et al. in 2020
that spanned from 2009 to 2020 showed course generation as
the most used learning path personalization method rather
than course sequence [4]. It was therefore laudable for this
study to focus on course generation mechanisms. Generally,
a computational intelligence technique of evolutionary
computing is suitable to provide the desired solution to the
challenges of personalized learning paths as evolutionary
computing seeks to optimize the objective function of
scientific problems [5].

Kardan et al. presented a path generation method using an
ant colony optimization algorithm and MapReduce
framework [6]. Focusing on the course generation category,
Li et al. presented a path generation method using a genetic

Submitted on April 20, 2023.
Published on June 13, 2023.
A. Y. Obeng, Kumasi Technical University, Ghana.
(e-mail: yaw.aobeng kstu.edu.gh)

algorithm and particle swarm optimization [7]. Vanitha et al.
used an ant colony and genetic algorithm to construct a
learning path in E-learning [8]. However, as more learning
objects, diverse learners with preferred changing learning
needs, strategies and techniques are added to these e-learning
systems frequently, input data to personalize learning paths
has been growing exponentially [4]. Regardless of such
growth of data, learning path personalization algorithms
ought to manage extensive datasets and respond swiftly to the
requests of learners. This has necessitated employing a more
robust algorithm or complement algorithms to efficiently
generate a personalized learning path that fits the
requirements of a learner.

Sachdeva et al. developed an Android application to
personalize e-learning using peer recommendations and ant
colony. The application enables learners to complete a course
within a short time [9]. However, their work was inefficient
and not accurate in determining the learning path of
individual learners. Zhang et al. proposed a mechanism to
simplify e-learning paths using differential evolution
computing algorithms [10]. However, their work did not
consider the learning performance of the learner during the
learning process.

E-learning systems are creating preferred learning
environments for several learners, learners prefer e-learning
systems that can generate personalized learning objects, and
computing algorithms are used to generate and optimize
personalized learning paths. These require resolving related
problems with sequencing learning objects, enhancing the
local search, reducing computational activities and
generating the best path. The Apache Spark-based
framework has been designed to provide scalability and
adaptability for handling big data and can be used in an e-
learning environment to capture big data streaming [11]. This
study then proposes a complementary learning path
personalization architecture that incorporates ant colony and
genetic algorithms to extend the functions of the Spark
framework (Spark-ACO-GA). Section II of this paper
discusses the problem formulation and the learning path
construction mechanisms of the study. Section III looks at the
Spark-ACO-GA learning path personalization architecture
and its implementation. Section IV looks at the results. The
conclusion of the paper is captured in Section V.

S. K. Opoku, Kumasi Technical University, Ghana.
(corresponding e-mail: samuel.kopoku kstu.edu.gh)

@

@

Complementary Architecture of E-Learning Path
Personalization and Optimization

Asare Y. Obeng and Samuel K. Opoku

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 42

II. PROBLEM FORMULATION AND STUDY PARAMETERS
The learning path personalization problem results from

clustering and classifying several learning resources and
learner profiles (personal profile, learner preference, and
learner portfolio) to address specific learner needs. The
personal profile and learner preference were obtained after
each learner provided such details through an online form.
Learner portfolio and performance were obtained from
activity logs after each learner had attempted the learning
resources and assessment. Progressing to study the next level
of learning resources depended mostly on the assessment
results or performance of the learner. The goal was to
generate the best-fitting learning paths to help learners make
the best use of learning resources to improve performance.

Several studies have been conducted into finding accurate
characteristics or profiles of learners that use e-learning
systems to identify and cluster learning paths and ultimately
improve learning activities. However, the standard
characteristics [8], [12] considered in this study are personal
profile, learner preference, and learner portfolio. Given that
each learner is represented as Le; Le = {Le1, Le2, Le3 … Le
n} and assigned with specific attributes. The learner profile is
made up of 4 tuples. Le = {PP, LP, LPo, Pe}, where PP
represents Personal Profile, LP represents Learner
Preference, LPo represents Learner Portfolio and Pe
represents Performance. Representations are given below.

• Personal Profile (PP) = {PP1, PP2, PP3, …, PPN}.
Basic learner information such as id, name, age, email,
username, and educational level were used.

• Learner Preference (LP) = {LP1, LP2, LP3 …. LPN}.
The values of LP include learning styles {Visual,
Auditory, Read/write, Kinesthetic, and Multimodal}.

• Learner Portfolio (LPo) = {LPo1, LPo2, LPo3….
LPoN}. Here, learner goal (objective and purpose of
completing a knowledge point, a unit, a course, or a
subject), and competency (acquired skills, experience
and knowledge level) were considered.

• Performance (Pe) = {Pe1, Pe2, Pe3….PN}. Academic
performance attributes included content studied, date
and time, state of completion, accumulated usage time,
score (range: 0 - 100), and grade were used.

To affirm a specific learning goal of a learner, learning
resources that constitute learning objects (assembled into
related learning content) should be developed. Learning
objects facilitate learner requirements customization that
makes personalization of learning content feasible [13]. The
authors reflected on learning resources as learning contents
that are reusable and denoted LR to their attributes such that
LR = {LR1, LR2, LR3 …LR N} where LR = {DCi, TCi, Ri}
are outlined below:

• Difficulty of learning content (DC) = {DC1, DC2,
DC3…. DC N} represents the values {1=Easy,
2=Moderate, 3=Difficult, 4=Most difficult} at various
levels.

• Time to complete (TC) = {TCi} where TCi is the time
required to finish the LR.

• Requirement (R) = {R1, R2, R3 …. RN}. It shows
knowledge of prior learning content required to
progress to the current LR.

Thus, the fundamental elements to represent the problem
include node(s) and edge(s); distance between edges of
nodes; weight(s) on edge(s) and ant, the search robot. Similar
to a graph, the generation of a personalized learning path is
represented as LP = (X, Y). X represents the nodes which
consist of a set of LR while Y represents the edge, a link that
connects the LRs. A value Vjk that represents learners’ scores
is assigned to the edges of node j and node k. The usage data
were serialized and mapped to the learning styles while
results were tagged to personal profiles.

III. SPARK-ACO-GA LEARNING PATH PERSONALIZATION
ARCHITECTURE AND IMPLEMENTATION

A. Spark-ACO-GA Architecture
The main components of the Spark-ACO-GA architecture

are illustrated in Fig. 1.

Fig. 1. Spark-ACO-GA Learning Path Personalization Architecture of

E-Learning System.

The Apache web server houses the E-learning platform.
The Apache web server was used since it is fast, scalable,
handles simultaneous requests from browsers and runs under
multitasking. The E-learning platform was Moodle. The
proposed system runs in standalone cluster mode. With this,
Spark runs on a single machine, precisely, the database server
and uses a local file system instead of Hadoop’s distributed
file system. As a 3-tier system, multiuser and concurrent
access from the web server is feasible; and data quality,
system maintenance, improved security, backup and recovery
are guaranteed. Data on e-learning can grow larger due to an
increase in the number of users. It is then appropriate to place
web and database applications on separate servers for
eventual scalability and achieving operational efficiency.

Structured data including learning resources, learner
profiles and other usage/log data on the e-learning system are
extracted from the web server and converted to comma-
separated values (CSV) files to facilitate the processes
involved in Spark. The output is stored in MySQL (a database
management system). Assigning a learning object with
identification (ID) and linking it with metadata of the learning
object can reduce the time required to obtain learning
information. Moreover, the difficulty of learning content, the
time taken to complete the learning object, and the

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 43

requirement (knowledge of prior learning content) must be
captured and stored in the database server. The learner profile
is automatically updated anytime a learner communicates
with the e-learning system. The structured data is
subsequently loaded to the learning path personalization and
optimization component for processing.

Complementing Apache Spark with MySQL is appropriate
because Spark increases query performance due to in-
memory computing (cache data into an in-memory table) [14]
and utilizes all the processing units in data processing which
is a major limitation of MySQL. Spark SQL as one of Apache
Spark’s libraries uses distributed and parallel processing
approaches to process and analyse a high volume of batch and
real-time data. Spark SQL is highly scalable to large jobs,
fault-tolerant and uses a cost-based optimizer for faster
execution of queries. Spark SQL works with structured and
semi-structured data and uses Java Database Connectivity
(JDBC) interfaces to connect to relational databases. Spark
SQL interacts with MySQL server through JDBC to execute
SQL queries and update the database with data from the path
clustering system.

To improve efficiency, Zabbix, a system monitoring
software is used to monitor and control elements of system
performance, hosts and applications activities. Zabbix is
compatible with MySQL and Spark. The high capacity and
performance, ability to auto-discover added servers, network
nodes and interfaces with centralized web administration
make Zabbix more appropriate for the learning path
personalization architecture than other system monitoring
software [15].

The Spark SQL libraries load the data into the in-memory
table for processing using the distributed and parallel
processing approaches of the Apache Spark framework.
Apache Spark is responsible for scheduling computational
tasks, distribution and manipulation of data in parallel using
resilient distributed datasets (RDDs). An RDD as a fault-
tolerant is cached in memory to support multiple parallel
operations and recovery of lost partitions.

Using the scalable machine learning library, MLlib in
Spark, data is clustered using the K-Means algorithm.
Genetic Algorithm (GA) is integrated with Ant Colony
(ACO) to resolve related problems with sequencing learning
objects, local search, computational activities and obtaining
the best path. The Learning Path Personalization Module
receives best-fitted-optimized learning paths and forwards
them to the Personalized Learning Paths component. Then,
the generated personalized learning paths are delivered to the
learners to improve their capabilities, preferences, and
academic performance.

B. Building Ant Colony on Spark (Spark-ACO)
Ant colony should perform several iterations before

attaining the best results in a traversal. The main element of
the pheromone matrix is updated by the best route outcomes
after the completion of every iteration process. Each updated
pheromone matrix is broadcast to all nodes in the cluster for
use in the subsequent iteration. As a result, the Spark-ACO
algorithm takes advantage of the Spark platform's sharing
functionality. Through broadcasting, each node in a cluster
receives the distance matrix between nodes for achieving
practicable solutions.

In the ant colony algorithm, ants construct their workable
solution independently for each iteration. Since each RDD in
the cluster represents an ant, the ant colony is packaged by
the Spark-ACO algorithm as analogous to RDD sets in
individual nodes. Following that several operations are
planned by Spark's capabilities to carry out RDD's
transformation and operation. According to the number of
cluster nodes, the Spark application is split into many
partitions, and the RDD operation mode is fully parallel in
each partition.

C. Combing Spark-ACO with Genetic Algorithm
The ACO acts as a constructive process to cluster learning

objects, personal profiles, learner preferences, and learner
portfolios into a learning path while GA optimizes the process
of selecting the best-fitted path among the paths that ACO
generates. Spark schedules computational tasks and
manipulates data in parallel using RDD. Integrating Spark
with ACO is necessary since the K-Means algorithm takes
extra time in the initial selection stage. The sharing
mechanism of the Spark platform is utilized by the Spark-
ACO algorithm. Since the ant independently builds its
feasible solution in each iterative process, the Spark-ACO
algorithm considers the ant colony as RDD sets where each
RDD represents an ant in each node in the cluster. Per the
number of nodes in a cluster, partitions are created to
represent the Spark program. The operations and
transformational activities of RDD are carried on by a series
of Spark functions in a complete parallel mode to construct
optimal solutions. Each node also functions per the stages
described below when GA is incorporated into a cluster:

• Stage 1: The outcomes of the sequence of city
travelling are used as the genetic algorithm's
preliminary population once the ant colony has
traversed each node. The starting population of
individuals is equal to the total number of ants where
every single individual represents the sequences of
each ant’s city touring. Every city sequence matches a
specific cost value while the cost value equals the
genetic algorithm's fitness.

• Stage 2: The selection, crossover, and mutation
operations are executed by a genetic algorithm.

• Stage 3: Where the least cost of the ant colony’s tour
is below the least value of the individual’s fitness of
genetic algorithm, and the least value among the two is
below the lowest value of the previous iteration, revise
chromosomal arrangements of the least individual GA
with the optimized path of the ant colony. Alternately,
the optimization path of the ant colony should be
updated using the least distinct chromosomal
sequences of GA.

• Stage 4: Where the iteration count is a prime digit, the
key process compiles the best outcomes from more
processes, computes process figures using the least
value, and broadcasts the least value and route.

• Stage 5: The key method generates the cities' best
sequence for this iteration and modifies the global
pheromone matrix and certain aspects of chromosomal
sequences of GA using certain routes of ant colony.

• Stage 6: The procedure is repeated until the algorithm
reaches the desired result.

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 44

D. Spark-ACO-AG Implementation Mechanism
The optimization algorithm of the ant colony creates ant-

like agents (alumni) to construct a solution while the genetic
algorithm produces the best chromosomes to enhance the
generation of a quality population. ACO and GA are
initialized. At this point, predetermination is made for the trail
value of the pheromone, heuristic facts, evaporation factor of
the pheromone, and total ants of the ant colony. The number
of times iteration is performed, the population size of the ants,
and the probability of crossover and mutation are also
initialized. The expected best solution (X%) from ACO, as
well as the best and worst population (K% and L%) of GA,
are initialized respectively. We denote chromosomes as the
representation of a probable solution to the challenge of
clustering analogous learners (alumni). Represented in binary
format, a single chromosome comprises five genes [Visual,
Auditory, Read/write, Kinesthetic, Multimodal …. Visual,
Auditory, Read/write, Kinesthetic, Multimodal] that are
considered learner characteristics.

Each ant traverses all cities; records the list of cities it has
traversed, the path length between cities and the total length
covered and comes back to the city it started with the
traversal. As a result, the study employs a nearest neighbour
(NN) technique in which ants randomly choose the next city
from a group of w nearby cities. An ant has to choose one
from the remaining cities that haven't been passed if all w
cities have been traversed. As per the probability pyij(t) of
state transfer, an ant will select the nearest city as it traverses
[16].

pyij(t) shows ant y at t time and the probability between
cities i and j as (1) indicates:

𝑝!"
#(𝑡) = ∫

$!"	
$ (!")×(!"

% 			!*	"∈,--./01	2

∑ $!"	
$ (!")×(!"

%
&'())*+,-. 			.4506/!70

 (1)

Group of cities in (1) is allowedy where ant y allows entry

at now; τij(t) denotes residue of pheromone between cities i
and j at time t; ηij(t) denotes anticipated level of city i moving
to city j at time t, the value of ηij(t) = 1/dij, dij is distance
between cities i and j; α denotes heuristic information factor;
β denotes anticipated heuristic factor [16].

The ant colony is created, parameter variables are
broadcasted, the best solution is updated, and the pheromone
matrix is updated and broadcasted to each RDD that
represents an ant in a node. Trial and error with iteration set
at 300 were used to identify the ideal ant population that was
set at 1, 25, 100, 200, and 500. Finding an optimal solution
using a few ants is not possible. Likewise, increasing the ants’
number consequently increases running time. Hence, setting
the number of ants/alumni (n) at 300 was appropriate to find
the optimal solution.

The selection of appropriate LR at the subsequent level
after a learner finishes a specific LR is determined by the
parameters of pheromone value, heuristic information, and
node visitation information (information stored in the
memory of ant to avoid looping). Learner score and total time
to study LR are inputs to update pheromone value. Total time
to study LR factoring ability to remember learned concept are
used to determine the heuristic information. The fitness of LR
is determined by the strength of the pheromone. The updated

pheromone trails are a key input to the selection of fit ants to
reproduce the new population in GA. With the introduction
of the evaporation factor and applying updating (2), the
volume of pheromone information at each edge is adjusted.

𝜏(89):				80/	 = (1 − 	𝜌) × 	𝜏(89):				.-1	 +	𝛥𝜏(89):	 𝜌	Î	(0, 1) (2)

where 𝜏(89):				80/	represents pheromone information on the edge
(n, m) after an update in the k node; 𝜏(89):				.-1	represents
pheromone information on the edge (n, m) before the update
in the k node; ρ represents the pheromone evaporation
information factor; and 𝛥𝜏(89):	 represents updated
pheromone information on the edge (n, m) in the k node.

Assessments that a learner takes after studying a concept
and/or completing a course (i.e., reaching the end of a node)
is/are used as input to compute a value(s) of pheromone at the
edges.

GA performs the optimization process by initializing,
selecting, crossover, and mutating. In a search space called
population, GA starts with specific solutions. Utilizing a user-
defined mathematical fitness function (3) as presented below,
the fitness of each ant in a population is evaluated and stored
as RDD sets in the cluster. In GA, the fitness function
(performance index) is used to assess the quality of learning
paths that had been generated.

𝑓 = 2 (𝑦	´	𝑡(!;<)! 	

8
!=< +	(1 − 𝑦)	´	𝑑! (3)

where f represents the fitness function of GA, t(i-1)i denotes
the degree of the relation of the (i - 1) learning resources with
i learning resource in the created learning path, di is the
parameter to determine the difficulty of learning resources
obtained from the metadata, y is a degree of learning (f
(TimeSpent/StipulatedTime)), and n represents the entire
number of learning resources selected for generating
personalized learning path.

When all the nodes are visited, the percentage (X%) of the
best solutions (best ants) of ACO is input into the mating pool
of fit ants of GA to reproduce a new population of ants.
Reproduction of a new population of ants occurs when the
best fitness or maximum generation is not reached. At this
stage, fit ants are selected to perform cross-over and mutation
to generate new off-springs which are subsequently
evaluated. Randomly, the roulette wheel is used to
stochastically select individuals with the highest fitness to
form the next generation. The probability of crossover
generations was set at 0.8 to reduce the chance of an offspring
having most of the characteristics of the parent. Generally,
the value of the probability of crossover ranges between 0.5
and 1.0. The probability of mutation was set at 0.005 to
induce diversity in the population and overcome the chance
of an offspring inheriting similar qualities from the parents.
Generally, the value of the probability of mutation ranges
between 0.005 and 0.05. This stage injects new LR into the
learning route.

Once the best fitness is reached or maximum generation is
obtained, the best population (K%) updates the global
pheromone value of ACO and the worst population (L%)
applies to pheromone evaporation as given in (4), (5) and (6).

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 45

𝜏89 	← 	 (1	 − 	𝑝)	𝜏89 (4)

For updating the global pheromone, the whole effect of
pheromone updates of the entire ants in each path (n, m) is
shown in (5), (6).

𝜏89(𝑡 + 1) = 𝜌𝜏89(𝑡) +	𝛥𝜏89:	 (𝑡) (5)

𝜏89(𝑡) = 2 𝛥𝜏89:	 (𝑡)

/
:=< 	"(𝑛,𝑚)	ϵ	C (6)

where 𝜏89(𝑡) and 𝜏89(𝑡 + 1) are the value of pheromone on
the edge (nm) at time t and (t + 1) respectively. The increment
in pheromone value is represented by 𝛥𝜏89:	 (𝑡).

The following pseudocode illustrates the entire mechanism
of the Spark-ACO-GA:
0.0 Begin

1.0 Initialize Spark-ACO parameters
2.0 Create ant colony
3.0 Broadcast ant colony parameter variables
4.0 For each node

4.1 For each cluster
4.1.1 Get ant colony from

RDD transformation
and operations.

4.1.2 Construct solutions
4.1.3 Record performance
4.1.4 Update local

performance
4.2 End each cluster

5.0 End each node
6.0 Update best solutions or generate optimal

path length
7.0 Update and broadcast pheromone matrix
8.0 If all ant colony is created then

8.1 Go to step 14.1 with X% best ants
9.0 Else

9.1 Go to step 2.0
10.0 End if
11.0 Generate Spark-ACO-GA initial population
12.0 Evaluate the fitness of each ant within each

cluster
13.0 If reached the best fitness or maximum

generation then
13.1 Return best ants
13.2 Update global pheromone (K%

best population)
13.3 Pheromone evaporation (L% worst

population)
13.4 If all ant colony created then

13.4.1 Best path obtained
13.4.2 Go to 16.0

13.5 Else
13.5.1 Go to step 2.0

13.6 End if
14.0 Else

14.1 Reproduce new population
14.2 Select the fit ants
14.3 Do crossover
14.4 Perform mutation
14.5 Create new population
14.6 Go to 12.0

15.0 End if
16.0 Stop

The genetic algorithm is combined with the ant colony-
based Spark algorithm to construct a solution, update the
pheromone, generate population, evaluate fitness, perform
genetic operations, and generate the best path. Repeatedly,
the whole collaborative process of Spark-ACO-GA runs till
the stipulated number of iterations are reached to create all
ant colony. At this point, the best path is created.

IV. RESULTS AND ANALYSIS OF THE EXPERIMENT
Designing, setting and determining specific parameters

that facilitate the experimentation are performed. The intent
is to test a complementary learning path clustering
architecture that incorporates an ant colony algorithm with
the nearest neighbour technique, genetic algorithm and
Apache Spark framework. In addition, the effects of node(s)
in the spark cluster on execution time, total execution time
and correctness of ACO, Spark-ACO with and without
nearest neighbour technique and Spark-ACO + GA are
determined.

A. Setting and Determining Parameters of the
Experiments
As part of setting up the environment to perform the

experiments, values of pheromone trail (α), the number of
ants/alumni (n), heuristic information (β), probability of
mutation (Pm), pheromone evaporation coefficient (ρ),
probability of crossover generations (Pc), and population size
were all determined through experiments. The parameters of
ρ and β were constantly held at 0.3 and 1 to 4 respectively to
ascertain the value of α. β was set with total iterations of 300.
Choosing 0.3 for ρ was appropriate to balance between
optimal values of 0.2 and 0.6 as a low value converges
quickly [8]. Initially, the parameter of α was varied between
0.1, 0.3, 0.6, 0.75, and 1.0. The value of 0.1 causes it to
converge rapidly. When the deterioration constant is set to
1.0, convergence to a solution was slow. Fewer evaporation
results in slower pheromone intensity degradation once a
lower value of constant was set. Naturally, a high number for
this element suggests that the effect of the preceding course
taken will swiftly fade. The outcome will be significantly
impacted by the new route. Finally, the value of α was set
between 0.5 and 2 (0.5, 1.0, 1.5, 2.0), and total iterations of
300.

The probability of crossover (Pc) generations was set at 0.8
to reduce the chance of an offspring having most of the
characteristics of the parent. The probability of mutation (Pm)
was set at 0.005 to induce diversity in the population and
overcome the chance of an offspring inheriting similar
qualities from the parents. The total ants/alumni (n) set at 300
was appropriate to find an optimal solution. The nodes in a
cluster of the Spark executor were configured as [1, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50].

For this research, four elements including software
development techniques, CASE tools, scope management,
and project schedule were selected from an undergraduate
course in software engineering. There were several subjects
for each concept, and two themes were selected for each
concept. Each subject included learning items with varying
degrees of complexity and presenting style.

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 46

To make each subject more individualized for the learners,
various combinations of LRs were used to convey it.
Delivering the appropriate LR to the appropriate student
based on those learners’ adaption characteristics was
essential. All students were assessed regardless of the LRs
studied to comprehend the concepts. Assessments were the
same for all students. The proposed architecture recommends
a learning route based on the prior experiences of a learner
(alumnus). Data needed for the experiments were gathered
from 214 second-year computer science students studying
software engineering course. The whole course was
scheduled to complete in 12 weeks. Formative assessments
were conducted after each theme. The students completed 20
summative assessment questions after the course to assess
their understanding of all the concepts. Additional data
obtained from alumni were also documented to aid the
learning path personalization.

The hardware set up for the experiment included an IBM
x3850 X6 Server – 4 processors, each with 20 cores, CPU
clocked at 3.0 GHz, and 384 GB capacity of memory. For
software, the RHEL7.6 Server operating system, spark-3.0.0-
bin-hadoop3.2, and JDK 8 were used to set up the
experiment's environment.

B. Effects of Spark Cluster Nodes, Pheromone Trail and
Heuristic Information on Execution Time
A specific time cost is required for communication and

cooperation across cluster nodes while the ant colony
algorithm is running on a cloud computing platform.
Therefore, given a certain ant colony size, adding a sufficient
number of nodes to a cluster may speed up the execution of
the algorithm. However, the algorithm's execution time rises
as the total cluster nodes exceed a certain crucial amount.
Considering these issues, experiments were designed to
examine how the clustering of nodes impacts the ant colony
algorithm's running time. In addition, it was appropriate to
determine how long an algorithm will converge for various
pheromone evaporation factors, how ants converge and
avoiding the limitless accumulation of trails affect the
execution time and solution.

The following ant colony algorithm settings are used in the
experiment to determine the appropriate number of nodes per
cluster: the total number of iterations Nc=100, values of
pheromone trail α = 1.5, total ants n = 300, the pheromone
evaporation coefficient = 0.5, the predicted heuristic factor =
2.0, and the heuristic information factor = 1.0. The nodes in a
cluster of the Spark executor are configured as [1, 5, 10, 15,
20, 25, 30, 35, 40, 45, 50]. We execute the Spark-ACO
algorithm 20 times for each executor value before calculating
the average time. The findings of the experiment are shown
in Fig. 2 with milliseconds serving as the time unit (ms).

From Fig. 2, setting the cluster node executor to 1 or having
a single node in the Spark cluster, the algorithm took the
longest amount of time to run. The algorithm took less total
time to run when the cluster node executor number is between
10 and 30 which confirms the work of Aharia et al. [17]. The
Spark cluster node is then set to 20 considering an ant colony
size of n = 300, which saves the maximum time.

Fig. 2. Relatedness of Total Cluster Nodes and Execution Time.

Using the initial values set earlier, Figs 3a and 3b were

generated.

(a)

(b)

Fig. 3. a) Pheromone trail (α); b) Heuristic information (β).

The alpha (α) value was calculated by measuring the

standard of an ideal solution. The values of α were initially
set between 0.5 and 2, and up to 300 iterations were carried
out. Fig. 3a plots the best solution against time (in seconds)
for various values of (0.5, 1.0, 1.5, 2.0). The alpha value was
calculated by measuring the standard of an ideal solution.
After plotting to determine the optimal solution against time,
the appropriate scope of values of α was 1 and 2.

The experiment was repeated to identify the parameter of
β in Fig. 3b. Before plotting to determine the optimal solution
against time for β, β varied from 1 to 4 with a constant value
of 1, and up to 300 iterations were carried out. After the
plotting, the appropriate scope of values of β became 2 and 3.

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 47

C. Determining the Total Execution Time of ACO and
Spartk-ACO
The study performs experiments to contrast the execution

times of ACO and Spark-ACO algorithms to demonstrate
their time effectiveness of them. Execution of the Spark-ACO
algorithm was performed on the Spark platform server and
the ACO algorithm in Java ran on a stand-alone server. These
two platforms had the same configurations. The ant colony
algorithm's settings are as follows: total iterations Nc=100,
values of pheromone intensity = 1.5, total ants n = 300, the
pheromone evaporation coefficient = 0.5, the predicted
heuristic factor = 2.0, and the heuristic information factor =
1.0. From earlier findings, the nodes in a cluster of the Spark
executor were set to 20. Additionally, the ant colony's size,
given by the n value was in the range [100, 300, 500, 700,
900, 1100, 1300, 1500]. For each number of ant colonies, run
each of the two algorithms separately 20 times before
calculating the average run time.

As shown in Fig. 4, ACO only runs faster than Spark-ACO
when the size of the ant colony was 100 or less. Thus, in
stand-alone mode, the standard ACO algorithm may execute
faster comparable to the Spark-ACO algorithm when the total
number of ant colony is small. The premise is that interactions
among nodes in a clustering result in a significant amount of
the total time of operation once the ant colony algorithm is
employed. A cluster of parallel computing will progressively
start to outperform stand-alone mode as colony size increases.
The Spark-ACO method uses the Spark framework to
compute its calculations and packages the ant colony in a
customizable distributed data RDD set. Each node in the
cluster has the same amount of the ant colony RDD, which
effectively utilizes the spark platform's computational
memory features. Ant colonies build the best solutions via a
succession of RDD conversion operations in each iteration
step. Spark thus demonstrates its benefits in memory-based
computing and avoiding data from landing. The Spark-ACO
algorithm executes faster than ACO as the colony size
increases.

Fig. 4. Time Cost of ACO and Spark-ACO.

D. Determining the Precision of the Hybridized
Complementary Algorithms
This research focused on using the nearest neighbour (NN)

technique and a hybrid genetic algorithm as the main
elements of the proposed complementary architecture to
enhance the outcome of the simple ant colony algorithm.

The following experiment is set up to test and compare the
outcomes of hybridized complementary algorithms in terms
of generating quality solutions.

The ant colony algorithm's settings are as follows: total
iterations Nc=300, values of pheromone intensity = 1.5, total
ants n = 300, the pheromone evaporation coefficient = 0.5,
the predicted heuristic factor = 2.0, and the heuristic
information factor = 1.0. From earlier findings, the Spark
cluster node executor was set to 20. In addition, the study
chooses cases of kroA100, rat783, berlin52, d198, rd400,
kroB150, and ch130 for investigations. The variants of the
algorithms (Spark-ACO, Spark-ACO with NN, and Spark-
ACO with NN and GA) were executed 20 times for each TSP
instance, and each best outcome and the TSPLIB each
algorithm produced are contrasted. The outcomes of the
experiment are shown in Fig. 5.

Fig. 5. Accuracy of hybridized complementary algorithms.

From Fig. 5, the operating time of the Spark-ACO

algorithm greatly shortens and attains improved running
speed than ACO. The Spark-ACO with NN algorithm attains
improved running speed than Spark-ACO while Spark-ACO
with NN and GA significantly enhanced the quality of
solutions and execution time than all the other algorithms.
This result confirms the observation made by Gaifeng et al.
[16].

V. CONCLUSION
The proposed architecture focused on integrating the ant

colony algorithm and genetic algorithm with Spark; a parallel
computing framework to run in standalone cluster mode.
Spark can run on a single machine and allows user-defined
functions to add custom optimizations. Spark increases query
performance since it is an in-memory distributed computing
engine. Spark distributes and manipulates data using RDDs.
RDDs are fault tolerant that are cached in memory to support
multiple parallel operations and recovery of lost partitions.
This distribution mechanism of Spark improves the execution
of the K-Means algorithm, and computational time, and
solves the issue of limited resources. Though the ant colony
algorithm facilitates the clustering of data, it takes a longer
time to solve large-scale problems and it is likely to be
trapped at a local optimum. The ant colony generates ant-like
agents to construct solutions while GA produces quality
chromosomes to enhance the generation of a quality

 EJECE, European Journal of Electrical Engineering and Computer Science
ISSN: 2736-5751

DOI: http://dx.doi.org/10.24018/ejece.2023.7.3.533 Vol 7 | Issue 3 | June 2023 48

population of ants. The fundamental ant colony technique is
devised and executed in Spark since an individual machine is
not able to handle the computation time of huge dataset
issues. Combining ACO and GA eliminated the likelihood of
an ant colony being trapped at a local optimum. The
execution time of the Spark-ACO significantly decreased
compared to the standalone ACO system. The NN approach
and GA were purposely integrated into Spark-ACO, which
significantly increased the accuracy of the results. Thus, the
ant colony algorithm, genetic algorithm and Spark framework
are complementary to generate and optimize personalized
learning paths. Our research leads us to the conclusion that
the proposed complementary architecture could help improve
the generation of personalized learning objects and best-
fitted-optimized learning paths to enhance the performance of
learners and boost technology-driven learning as preferred
learning environments.

REFERENCES
[1] Obeng, AY, Coleman A. Evaluating the effects and outcome of

technological innovation on a web-based e-learning system. Cogent
Education, 2020; 7: 1836729.

[2] Choudhury S, Pattnaik S. Emerging themes in e-learning: A review
from the stakeholders' Perspective. Computers & Education, 2020;
144: 103657.

[3] Opoku SK, Appiah S. Automating Students’ Activities in Higher
Educational Institutions. International Journal of Computer
Applications Technology and Research, 2016; 5(11): 693-697.

[4] Nabizadeh AH, Leal JP, Rafsanjani HN, Shah RR. Learning path
personalization and recommendation methods: A survey of the state-
of-the-art. Expert Systems with Applications, 2020; 159: 113596.

[5] Opoku SK. A Robust Mechanism for Categorizing Context-Aware
Applications into Generations. European Journal of Electrical
Engineering and Computer Science, 2021; 5(6): 10-16.

[6] Kardan AA, Ebrahim MA, Imani MB. A new personalized learning
path generation method: Aco-map. Indian Journal of Scientific
Research, 2017; 5: 17.

[7] Li JW, Chang YC, Chu CP, Tsai CC. A self-adjusting e-course
generation process for personalized learning. Expert Systems with
Applications, 2021; 39: 3223-3232.

[8] Vanitha V, Krishnan P, Elakkiya R. Collaborative optimization
algorithm for learning path construction in E-learning. Computers and
Electrical Engineering, 2019; 77: 325-338.

[9] Sachdeva S, Singh M, Kumar N., Goswami, P. Personalized e-learning
based on ant colony optimization, International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 2022.

[10] Zhang YW, Xiao Q, Song YL, Chen MM. Learning Path Optimization
Based on Multi-Attribute Matching and Variable Length Continuous
Representation. Symmetry, 2022; 14(11): 2360.

[11] Fernández-Gómez AM, Gutiérrez-Avilés D, Troncoso A, Martínez-
Álvarez F. A new Apache Spark-based framework for big data
streaming forecasting in IoT networks. The Journal of Supercomputing,
2023: 1-23.

[12] Kolekar SV, Pai RM, Pai MM, Adaptive User Interface for Moodle
based E-learning System using Learning Styles. Procedia Computer
Science, 2018; 135: 606-615.

[13] Guarino N, Oberle D, Staab S. What Is an Ontology? In Handbook on
Ontologies. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009 (pp.
1–17).

[14] ProjectPro.io. Spark SQL for Relational Big Data Processing
[Internet], 2023 [updated 2023 Apr 13, cited 2023 Apr 17]. Available
from: https://www.projectpro.io/article/spark-sql-for-relational-big-
data-processing/355.

[15] Zabbix.com, Zabbix documentation [Internet], 2023 [cited 2023 April
17]. Available from:
https://www.zabbix.com/documentation/current/en/manual/introducti
on/manual_structure.

[16] Gaifang D, Xueliang F, Honghui L, Pengfei X. Cooperative ant colony-
genetic algorithm based on spark. Computers and Electrical
Engineering, 2016: 1-10.

[17] Aharia M, Das T, Li H. Discretized streams: an efficient and fault-
tolerant model for stream processing on large clusters. In Usenix

conference on hot topics in cloud computing, 1-10. Discretized
Streams: An Efficient and Fault-Tolerant Model for Stream Processing
on Large Clusters; 2012

