•   Bisma Imtiaz

  •   Imran Zafar

  •   Cui Yuanhui


Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.

Keywords: Distributed Generation (DG), microgrid, modelling of microgrid, IEEE 13 bus test feeder, inverter-interfaced DG, renewable energy sources


D. Çelikler, “Awareness about renewable energy of pre-service science teachers in Turkey,” Renew. Energy, vol. 60, pp. 343–348, 2013, doi: 10.1016/j.renene.2013.05.034.

N. Jenkins, J. B. Ekanayake, and G. Strbac, Distributed generation. 2010.

Y. Menchafou, H. El Markhi, M. Zahri, and M. Habibi, “Impact of distributed generation integration in electric power distribution systems on fault location methods,” Proc. 2015 IEEE Int. Renew. Sustain. Energy Conf. IRSEC 2015, no. 1998, 2016, doi: 10.1109/IRSEC.2015.7455137.

K. A. Nigim and L. W. J, “Micro grid integration opportunities and challenges,” IEEE Power Eng. Soc. Gen. Meet. (PES ’07), pp. 1–6, 2007.

D. T. Ton and M. A. Smith, “The U.S. Department of Energy’s Microgrid Initiative,” Electr. J., 2012, doi: 10.1016/j.tej.2012.09.013.

F. Li, Z. Lin, Z. Qian, and J. Wu, “Active DC bus signaling control method for coordinating multiple energy storage devices in DC microgrid,” 2017 IEEE 2nd Int. Conf. Direct Curr. Microgrids, ICDCM 2017, pp. 221–226, 2017, doi: 10.1109/ICDCM.2017.8001048.

S. A. Gopalan, V. Sreeram, H. H. C. Iu, Z. Xu, Z. Y. Dong, and K. P. Wong, “Fault analysis of an islanded Multi-microgrid,” 2012, doi: 10.1109/PESGM.2012.6344872.

A. Hooshyar and R. Iravani, “Microgrid Protection,” Proc. IEEE, vol. 105, no. 7, pp. 1332–1353, 2017, doi: 10.1109/JPROC.2017.2669342.

H. Andrei, M. Gaiceanu, M. Stanculescu, I. Marinescu, and P. C. Andrei, “Microgrid Protection,” in Power Systems, 2020.

D. E. Olivares et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, 2014, doi: 10.1109/TSG.2013.2295514.

A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control approach to microgrid operation optimization,” IEEE Trans. Control Syst. Technol., 2014, doi: 10.1109/TCST.2013.2295737.

M. Mahmoodi, P. Shamsi, and B. Fahimi, “Economic dispatch of a hybrid microgrid with distributed energy storage,” IEEE Trans. Smart Grid, 2015, doi: 10.1109/TSG.2014.2384031.

M. Nemati, M. Braun, and S. Tenbohlen, “Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming,” Appl. Energy, 2018, doi: 10.1016/j.apenergy.2017.07.007.

R. B. Hytowitz and K. W. Hedman, “Managing solar uncertainty in microgrid systems with stochastic unit commitment,” Electr. Power Syst. Res., 2015, doi: 10.1016/j.epsr.2014.08.020.

U. D. E. T. D. Helsinki, Faisal A . Mohamed Helsinki University of Technology Control Engineering Faisal A . Mohamed. 2008.

M. Rahimian, L. D. Iulo, and J. M. P. Duarte, “A Review of Predictive Software for the Design of Community Microgrids,” Journal of Engineering (United Kingdom), vol. 2018. 2018, doi: 10.1155/2018/5350981.

S. Sen and V. Kumar, “Microgrid modelling: A comprehensive survey,” Annual Reviews in Control, vol. 46, no. xxxx. Elsevier Ltd, pp. 216–250, 2018, doi: 10.1016/j.arcontrol.2018.10.010.

T. Porsinger, P. Janik, Z. Leonowicz, and R. Gono, “Component modelling for microgrids,” 2016, doi: 10.1109/EEEIC.2016.7555869.

S. Hussain Basha and P. Venkatesh, “Control of Solar Photovoltaic (Pv) Power Generation in Grid-Connected and Islanded Microgrids,” Int. J. Eng. Reseaerch Gen. Sci., vol. 3, no. 3, pp. 121–141, 2015.

V. S. Bugade and P. K. Katti, “Dynamic modelling of microgrid with distributed generation for grid integration,” in International Conference on Energy Systems and Applications, ICESA 2015, 2016, no. Icesa, pp. 103–107, doi: 10.1109/ICESA.2015.7503321.

B. V. Rajanna, S. V. N. L. Lalitha, G. Joga Rao, and S. K. Shrivastava, “Solar photovoltaic generators with MPPT and battery storage in microgrids,” Int. J. Power Electron. Drive Syst., 2016, doi: 10.11591/ijpeds.v7.i3.pp. 701-712.

R. J. Vijayan, C. Subrahmanyam, and R. Roy, “Dynamic modeling of microgrid for grid connected and intentional islanding operation,” 2012, doi: 10.1109/APCET.2012.6302055.

T. L. Lee and P. T. Cheng, “Design of a new cooperative harmonic filtering strategy for distributed generation interface converters in an islanding network,” IEEE Trans. Power Electron., 2007, doi: 10.1109/TPEL.2007.904200.

A. Micallef, M. Apap, C. Spiteri-Staines, J. M. Guerrero, and J. C. Vasquez, “Reactive power sharing and voltage harmonic distortion compensation of droop controlled single phase islanded microgrids,” IEEE Trans. Smart Grid, 2014, doi: 10.1109/TSG.2013.2291912.

International Electrotechnical Commission, “IEC 61727:Photovoltaic (PV) systems – Characteristics of the utility interface,” Order A J. Theory Ordered Sets Its Appl., 2004.

IEEE, “IEEE Application Guide for IEEE Std 1547TM, IEEE Standard for Interconnecting Distributed Resources with Electric Power Systems,” IEEE Std 1547.2-2008, 2009, doi: 10.1109/IEEESTD.2008.4816078.

P. Singh, S. Suryanarayanan, S. Chakraborty, and D. Zimmerle, “THESIS REAL-TIME MODELING AND SIMULATION OF DISTRIBUTION FEEDER AND DISTRIBUTED RESOURCES Submitted by,” Colorado State University. Libraries, 2015.

J. M. Guerrero, L. G. de Vicuna, J. Matas, M. Castilla, and J. Miret, “A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1205–1213, 2004, doi: 10.1109/TPEL.2004.833451.

J. Miret, M. Castilla, J. Matas, J. M. Guerrero, and J. C. Vasquez, “Selective harmonic-compensation control for single-phase active power filter with high harmonic rejection,” IEEE Trans. Ind. Electron., 2009, doi: 10.1109/TIE.2009.2024662.

J. M. Corrêa, S. Chakraborty, M. G. Simões, and F. A. Farret, “A Single Phase High Frequency AC Microgrid with an Unified Power Quality Conditioner,” 2003.

A. Karabiber, C. Keles, A. Kaygusuz, B. B. Alagoz, and M. Akcin, “Power converters modeling in Matlab/Simulink for microgrid simulations,” in 4th International Istanbul Smart Grid Congress and Fair, ICSG 2016, 2016, no. April, doi: 10.1109/SGCF.2016.7492418.

R. C. ury, Tilok Boruah, “Design of a Micro-Grid System in Matlab/Simulink,” Int. J. Innov. Res. Sci. Eng. Technol., vol. 04, no. 07, pp. 5262–5269, 2015, doi: 10.15680/ijirset.2015.0407030.

T. Porsinger, P. Janik, Z. Leonowicz, and R. Gono, “Modelling and optimization in microgrids,” Energies, vol. 10, no. 4, pp. 1–22, 2017, doi: 10.3390/en10040523.

A. Micallef, M. Apap, C. Spiteri-Staines, and J. M. Guerrero, “Mitigation of Harmonics in Grid-Connected and Islanded Microgrids Via Virtual Admittances and Impedances,” IEEE Trans. Smart Grid, 2017, doi: 10.1109/TSG.2015.2497409.

“Resources | PES Test Feeder.” https://site.ieee.org/pes-testfeeders/resources/ (accessed Apr. 10, 2020).

A. M. Stanisavljevi?, V. A. Kati?, B. P. Dumni?, and B. P. Popadi?, “A brief overview of the distribution test grids with a distributed generation inclusion case study,” Serbian J. Electr. Eng., vol. 15, no. 1, pp. 115–129, 2018, doi: 10.2298/SJEE1801115S.

“IEEE 13 Node Test Feeder - MATLAB & Simulink.” https://www.mathworks.com/help/physmod/sps/examples/ieee-13-node-test-feeder.html (accessed Apr. 10, 2020).

M. G. Villalva, T. G. De Siqueira, and E. Ruppert, “Voltage regulation of photovoltaic arrays: Small-signal analysis and control design,” IET Power Electron., vol. 3, no. 6, pp. 869–880, 2010, doi: 10.1049/iet-pel.2008.0344.

E. Irmak and N. Güler, “A model predictive control-based hybrid MPPT method for boost converters,” Int. J. Electron., vol. 107, no. 1, pp. 1–16, 2020, doi: 10.1080/00207217.2019.1582715.

E. Irmak and N. Güler, “Application of a high efficient voltage regulation system with MPPT algorithm,” Int. J. Electr. Power Energy Syst., vol. 44, no. 1, pp. 703–712, Jan. 2013, doi: 10.1016/j.ijepes.2012.08.011.

M. A. Fouad, M. A. Badr, and M. M. Ibrahim, “Modeling of Micro-grid System Components using Matlab/Simulink,” Glob. Sci. Journals, vol. 5, no. 5, pp. 163–177, 2017.

G. S. Stavrakakis and G. N. Kariniotakis, “A general simulation algorithm for the accurate assessment of ISOLATED Diesel - Wind Turbines Systems Interaction. Part I: A General Multimachine Power System Model.,” IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 577–583, 1995, doi: 10.1109/60.464885.

M. Theses and H. A. Saleem, “Microgrid Modeling and Grid Interconnection Studies,” p. 59, 2014, doi: 10.1177/0361684314554917.

O. Tremblay and L. A. Dessaint, “Experimental validation of a battery dynamic model for EV applications,” 24th Int. Batter. Hybrid Fuel Cell Electr. Veh. Symp. Exhib. 2009, EVS 24, vol. 2, pp. 930–939, 2009.

Y. C. Liu, “Improvement of available battery capacity in electric vehicles,” J. Power Electron., vol. 13, no. 3, pp. 497–506, 2013, doi: 10.6113/JPE.2013.13.3.497.

H. Bai and C. Mi, “The impact of bidirectional DC-DC converter on the inverter operation and battery current in hybrid electric vehicles,” in 8th International Conference on Power Electronics - ECCE Asia: “Green World with Power Electronics”, ICPE 2011-ECCE Asia, 2011, pp. 1013–1015, doi: .1109/ICPE.2011.5944686.

S. A. O. Da Silva, E. Tomizaki, R. Novochadlo, and E. A. A. Coelho, “PLL structures for utility connected systems under distorted utility conditions,” 2006, doi: 10.1109/IECON.2006.347416.

V. Kaura and V. Blasko, “Operation of a phase locked loop system under distorted utility conditions,” IEEE Trans. Ind. Appl., 1997, doi: 10.1109/28.567077.

Y. Wang, Z. Lu, and Y. Min, “Analysis and comparison on the control strategies of multiple voltage source converters in autonomous microgrid,” 2010, doi: 10.1049/cp.2010.0294.

I. Vechiu, O. Curea, A. Llaria, and H. Camblong, “Control of power converters for microgrids,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., 2011, doi: 10.1108/03321641111091575.

C. K. Sao and P. W. Lehn, “Intentional islanded operation of converter fed microgrids,” 2006, doi: 10.1109/pes.2006.1708862.

R. H. Furlan, R. P. Bataglioli, W. C. Carvalho, and M. Oleskovicz, “Optimal allocation of distributed generation in a radial distribution network for losses reduction and voltage profile improvement,” SBSE 2018 - 7th Brazilian Electr. Syst. Symp., pp. 1–6, 2018, doi: 10.1109/SBSE.2018.8395932.

A. Elmitwally, “A new algorithm for allocating multiple distributed generation units based on load centroid concept,” Alexandria Eng. J., vol. 52, no. 4, pp. 655–663, 2013, doi: 10.1016/j.aej.2013.08.011.


Download data is not yet available.


How to Cite
Imtiaz, B., Zafar, I. and Yuanhui, C. 2021. Modelling of an Optimized Microgrid Model by Integrating DG Distributed Generation Sources to IEEE 13 Bus System. European Journal of Electrical Engineering and Computer Science. 5, 2 (Mar. 2021), 18-25. DOI:https://doi.org/10.24018/ejece.2021.5.2.309.