An Effective Heuristics Approach for Performance Enhancement of MANET

##plugins.themes.bootstrap3.article.main##

  •   Koshal Rahman Rahmani

  •   Md Sohel Rana

  •   Md Alamin Hossan

  •   Wali Mohammad Wadeed

Abstract

Mobile Ad-hoc Networks (MANET) are widely adopted in almost all research fields due to their significant advantages like minimal energy consumption and compact size. In MANET major challenges are optimal coverage, a lifetime of nodes, and throughput. This paper proposed a hybrid ant colony-flower pollination (HAC - FP) algorithm for throughput maximization and minimal energy consumption in a sensor network. To enhance the performance of the MANET network this research adopts the meta-heuristic technique. The meta-heuristic approach utilized for the MANET network is the ant colony and flower pollination algorithm. The planned HAC-FP makes use of neighborhood distance to determine the best position for each node. With hypersphere localization, the Levy struggle in flower pollination is used for optimal energy location. The placement of sensor nodes is identified in the first step using a hypersphere. Sensor network node energy consumption is lowered based on neighborhood distance. The results showed that the suggested HAC-FP algorithm, rather than existing methodologies, enhances the MANET network's coverage area. Further proposed HAC-FP algorithm minimizes the energy consumption level of the MANET than the conventional genetic approach.


Keywords: Mobile Ad-hoc Network, Neighbourhood Distance, Levy Flight, Flower Pollination, Ant Colony

References

Akyildiz I. F., Su W., Sankarasubramaniam Y., & Cayirci E. Mobile Ad-hoc Networks: a survey.Computer networks, 2002;38(4):393-422.

Sivakumar S., & Venkatesan R. Meta-heuristic approaches for minimizing error in localization of Mobile Ad-hoc Networks. Applied soft computing, 2015; 36:506-518.

Bulusu N., Heidemann J., Estrin D., & Tran T. Self-configuring localization systems: Design and experimental evaluation. ACM Transactions on Embedded Computing Systems (TECS), 2004;3(1), 24-60.

Gungor V. C., & Hancke G. P. Industrial Mobile Ad-hoc Networks: Challenges, design principles, and technical approaches. IEEE Transactions on industrial electronics, 2009;56(10):4258-4265.

Shiu Y. S., Chang S. Y., Wu H. C., Huang S. C. H., & Chen H. H. Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 2011;18(2).

Nardelli P. H., Alves H., De Lima C. H., & Latva-Aho M. Throughput maximization in multi-hop wireless networks under a secrecy constraint. Computer Networks, 2016;109:13-20.

Moshizi M. M., Bardsiri V. K., & Heydarabadipour E. The Application of Meta-Heuristic based Clustering Techniques in Mobile Ad-hoc Networks. International Journal of Control and Automation, 2015; 8(3):319-328.

Branch B., & Bardsir I. The Application of Meta-Heuristic based Clustering Techniques in Mobile Ad-hoc Networks. International Journal of Control and Automation, 2015; 8(3):319-328.

Prasad D. R., Naganjaneyulu P. V., & Prasad K. S. Metaheuristic techniques for cluster selection in MANET. In Algorithms, Methodology, Models, and Applications in Emerging Technologies (ICAMMAET), 2017 International Conference on, pp. 1-6. IEEE.

Zeng Z., Yu X., He K., Huang W., & Fu Z. Iterated tabu search and variable neighborhood descent for packing unequal circles into a circular container. European Journal of Operational Research, 2016;250(2):615-627.

Adickes M. D., Billo R. E., Norman B. A., Banerjee S., Nnaji B. O., & Rajgopal J. A. Optimization of indoor wireless communication network layouts. Iie Transactions, 2002;34(9):823-836.

Birgin E. G., Martinez J. M., &Ronconi D. P. Optimizing the packing of cylinders into a rectangular container: a nonlinear approach. European Journal of Operational Research, 2005;160(1):19-33.

Castillo I., Kampas F. J., &Pintér J. D. Solving circle packing problems by global optimization: numerical results and industrial applications. European Journal of Operational Research, 2008;191(3):786-802.

Tahir N. H. M., &Atan F. A Modified Genetic Algorithm Method for Maximum Coverage in Dynamic Mobile Mobile Ad-hoc Networks. Journal of Basic and Applied Scientific Research, 2016; Basic. Appl. Sci. Res., 6(11)26-32.

Baccelli F., El Gamal A., & David N. C. Interference networks with point-to-point codes. IEEE Transactions on Information Theory, 2011;57(5):2582-2596.

Gomez-Cuba F., Asorey-Cacheda R., & Gonzalez-Castano F. J. A survey on cooperative diversity for wireless networks. IEEE Communications Surveys & Tutorials, 2012;14(3):822-835.

Haenggi M. Stochastic geometry for wireless networks. Cambridge University Press. 2012; Cambridge University Press, 9781139043816.

Inaltekin H., Chiang M., Poor H. V., & Wicker S. B. On unbounded path-loss models: effects of singularity on wireless network performance. IEEE Journal on Selected Areas in Communications, 2009;27(7).

Nardelli P. H., Kountouris M., Cardieri P., & Latva-Aho M. Throughput optimization in wireless networks under stability and packet loss constraints. IEEE Transactions on Mobile Computing, 2014;13(8):1883-1895.

Benaya A. M., Shokair M., El-Rabaie E. S., &Elkordy M. F. Optimal power allocation for sensing-based spectrum sharing in MIMO cognitive relay networks. Wireless Personal Communications, 2015; 82(4):2695-2707.

Rosas-Casals M., Valverde S., & Solé R. V. Topological vulnerability of the European power grid under errors and attacks. International Journal of Bifurcation and Chaos, 2007;17(07):2465-2475.

Panaitopol D., Datta R., & Fettweis G. Cyclostationary detection of cognitive radio systems using GFDM modulation. In 2012 IEEE Wireless Communications and Networking Conference (WCNC), pp. 930-934. IEEE.

Inzucchi S. E., Bergenstal R. M., Buse J. B., Diamant M., Ferrannini E., Nauck M., & Matthews D. R. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes care, 2015;38(1):140-149.

Zewail I., Saad W., Shokair M., &El_dolil S. A. Maximizing the total throughput for GFDM system using hybrid PSO–PS algorithm. Journal of Electrical Systems and Information Technology, 2017.

Lin H., & Siohan P. Orthogonality improved GFDM with low complexity implementation. In 2015 IEEE Wireless Communications and Networking Conference (WCNC), pp. 597-602. IEEE.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Rahmani, K. R., Rana, M.S., Hossan, M.A. and Wadeed, W.M. 2022. An Effective Heuristics Approach for Performance Enhancement of MANET. European Journal of Electrical Engineering and Computer Science. 6, 1 (Jan. 2022), 16–23. DOI:https://doi.org/10.24018/ejece.2022.6.1.387.