##plugins.themes.bootstrap3.article.main##

In this paper are analyzed and formulated the basic requirements for the drive system of a class of modernized drilling machines. On this basis, a methodology for optimal choice of the feed and spindle drives is offered. The respective algorithm takes into account the specific features of the technological processes, the processed materials, the tools used and their wear, as well as the mechanical gear types. Examples with DC and AC motor drives for the coordinate axes and the spindle are presented, illustrating the practical application of the offered methodology. The research carried out and the results obtained can be used in the development of drive systems for the studied class of machine tools.

Downloads

Download data is not yet available.

References

  1. Popov G., Machine tools, part I: Applicability, device and control, Second book, Technical of University of Sofia, Sofia, 2010, ISBN 978-954-438-766-2.
     Google Scholar
  2. Tata McGraw-Hill Education, Manufacturing Technology: Metal cutting and machine tools, Vol. 2, 2013, ISBN 9781259029561.
     Google Scholar
  3. Youssef, H. A., H. El-Hofy, Machining Technology: Machine Tools and Operations, CRC Press, 2008, ISBN 9781420043402.
     Google Scholar
  4. Mikhov M., M. Zhilevski, Analysis of a Multi-Coordinate Drive System Aiming at Performance Improvement, Proceedings of the International Conference "Research and Development in Mechanical Industry", Vol. 2, pp. 1102-1107, Vrnjacka Banja, Serbia, 2012, ISBN 978-86-6075-037-4.
     Google Scholar
  5. Mikhov M., M. Zhilevski, Performance Improvement of a Type of Milling Machines, Proceedings of the International Conference "Research and Development in Mechanical Industry", Vol. 1, pp. 218-227, Kopaonik, Serbia, 2013, ISBN 978-86-6075-042-8.
     Google Scholar
  6. Altintas, Y., A. Verl, C. Brecher, L. Uriarte, G. Pritschow, Machine Tool Feed Drives, CIRP Annals - Manufacturing Technology, vol. 60, No. 2, pp. 779 -796, 2011, ISSN: 0007-8506.
     Google Scholar
  7. Mikhov M., Electric Drive Systems, Technical University of Sofia, Sofia, 2011, ISBN 978-954-438-922-2.
     Google Scholar
  8. Bose B. K., Power electronics and motor drives: advances and trends. London, Academic Press, 2006, ISBN 978-0-12-088405-6.
     Google Scholar
  9. DIN 69051-3: Werkzeugmaschinen; Kugelgewindetriebe; Abnahme-bedingungen und Abnahmepr?fungen, 1998.
     Google Scholar
  10. DIN 69051-4: Kugelgewindetriebe-Berechnung der statischen und dynamischen Tragzahl sowie der Lebensdauer, Entwurf April 1989.
     Google Scholar
  11. Sandvik Coromant, Metalcutting Technical Guide: Turning, Milling, Drilling, Boring, Toolholding, Sandvik, 2005.
     Google Scholar
  12. Sandvik Coromant, Tool Selection Guide, Selected Assortment in Turning-Milling-Drilling, Sandvik, 1997.
     Google Scholar
  13. Andonov I., Cutting of Metals, Softtrade, Sofia, 2001 (In Bulgarian).
     Google Scholar
  14. Braitinger, H., Elektrische Antriebstechnik, AMK Arnold M?ller, 2004.
     Google Scholar
  15. Precision Ball Screw Assemblies, Rexroth Bosch Group, Catalogue, 2009.
     Google Scholar
  16. SERVOMOTORS, Gama Motors Catalogue, 2014.
     Google Scholar
  17. http://www.zgpu-group.com/archives/category/sensors.
     Google Scholar
  18. AMKASYN, Servo Drives KE/KW, AMK Catalogue, 2014.
     Google Scholar
  19. DYNASYN, Servo Motors DT and DP, AMK Catalogue, 2014.
     Google Scholar
  20. AMKASYN, AC Servo- and Main Spindle Motors, AMK Catalogue, 2014.
     Google Scholar